

ASIA-PACIFIC TELECOMMUNITY **The 32nd Meeting of the APT Wireless Group (AWG-32)** 4–8 March 2024, Pattaya, Thailand

Document No: AWG-32/INP-92

26 February 2024

ITU-APT Foundation of India (IAFI¹)

FURTHER UPDATES TO THE PROPOSED WORKING DOCUMENT TOWARDS A DRAFT NEW APT REPORT ON WAS IN ASIA PACIFIC

1. Introduction:

AWG-31 started work on a new Report on Wireless Access Systems, considering Radio Local Access Networks (WAS/RLAN) and 5G NRU (as per 3GPP).

Proposal:

Draft Working document in AWG-31/TMP-29 (Rev. 1) has been further revised, taking into account the comments and suggestions received during AWG-31

Encl: As above

¹ ITU-APT FOUNDATION OF INDIA (<u>IAFI</u>)

ASIA-PACIFIC TELECOMMUNITYDocument No:The 31st Meeting of the APT Wireless Group
(AWG-31)AWG-31/TMP-29
(Rev. 1)22 - 26 May 2023, Ha Noi, Socialist Republic of Viet Nam25 May 2023

WORKING DOCUMENT TOWARDS A NEW APT REPORT ON RADIO LOCAL AREA NETWORKS (RLAN)

[Editor's Note: This working document is based on contributions that were received at AWG-31 and has not been fully reviewed and needs to be further discussed at AWG-32]

Input documents: AWG-30/INP-27 NZL AWG-31/INP-56Rev.1 HPE, Intel AWG-31/INP-95 IAFI

[AWG-30/INP-27]

WIRELESS ACCESS SYSTEMS / RADIO LOCAL AREA NETWORKS (WAS/RLAN) IN THE 6 GHZ FREQUENCY BAND

[AWG-31/INP-56Rev.1]

Working document towards a new APT Report on Wi-Fi Technology, Use Cases, Spectrum Demand and Regulatory Development

[AWG-31/INP-95]

PROPOSED WORKING DOCUMENT TOWARDS A DRAFT NEW APT REPORT ON STATUS OF 5925 -7125 MHZ SPECTRUM USAGE, TECHNICAL CONDITIONS AND CHANNEL ARRANGEMENTS FOR WAS/RLAN IN ASIA PACIFIC

[Editor's note: reflect source documents above the text proposals / section titles]

[AWG-31/INP-95]

Table of Contents

- 1 Introduction
- 2 Background
- 3 Abbreviations and acronyms
- 4 Usage of the 5925 7125 MHz spectrum
- 5 Technical Conditions
- 6 Channel Arrangements for RLAN
- 7 Channel Arrangements for WAS
- 8 Summary

1. Scope

[Editor's note: The scope below is taken from the Work Plan agreed in AWG-30] This Report provides an overview of technology developments and implementation aspects of Radio Local Area Networks (RLAN). It reviews previous reports such as on 5 GHz, new developments on the 6 GHz band

The report covers an overview of:

- Global trends in Radio Local Area Networks (RLAN) technologies
- On-going industry developments and technical improvements in Radio Local Area Networks (RLAN)
- Use cases and experiences of implementation of Radio Local Area Networks (RLAN)

Information on RLAN rules adopted by APT and non-APT administrations

[AWG-31/INP-56Rev.1]

This new APT Report provides an overview of the latest Wi-Fi technology, use cases, spectrum demand and regulatory developments.

[Editor's note: comments were made about including more RLAN technologies. Input contributions only for Wi-Fi in AWG-30 and AWG-31.]

[AWG-31/INP-56Rev.1] [AWG-31/INP-95]

2. Introduction

[AWG-31/INP-56Rev.1]

Internet connectivity is an essential socioeconomic function and Wi-Fi is the primary means of delivering it to billions of users around the world. Statistics from Cisco show Wi-Fi networks carried 52.6% of the world's total Internet traffic in 2021². Wi-Fi plays a vital role in global economic development. According to a report from Wi-Fi Alliance³, the connectivity provided by Wi-Fi through lower-cost devices delivers trillions of dollars in value to the global economy. [Editor's Note: Rephrase this para with global harmonization/economies of scale]

Since Wi-Fi was first released to consumers in 1997, Wi-Fi standards have been continually evolving – typically resulting in higher throughput, more capacity and increased coverage. In the last 5 years, the Wi-Fi standards body, IEEE 802.11, developed the latest 802.11ax standard, commercially known as Wi-Fi 6/6E. Wi-Fi 6 Release 1 is based on IEEE 802.11ax in the legacy 2.4 and 5 GHz license-exempt bands, while Wi-Fi 6E extends its frequency range to 6 GHz (5925 – 7125 MHz) to address widespread spectrum congestion in the 2.4 and 5 GHz bands.

² Cisco's Internet Traffic Report & Forecast.

³ Wi-Fi Alliance, <u>Global Economic Value of Wi-Fi® 2021 – 2025</u>

With Wi-Fi 6E, enterprises can support new use cases that require multi-gigabit speeds, larger numbers of channels, and millisecond levels of latency.

Although Wi-Fi 6E is a relatively recent standard, standardization work for the next generation, 802.11be (or Wi-Fi 7), is already on the agenda of the IEEE 802.11 working group. Wi-Fi 7 builds on Wi-Fi 6E's access to the 6 GHz band and increases data rates to over 40 Gb/s through the use of 320 MHz channels. In addition, Wi-Fi 7 will also further reduce the network latency and improve link robustness in the presence of interference via features such as Multi-Link Operation (MLO).

[AWG-31/INP-95]

Wi-Fi has proved the most popular way of internet connectivity to multiple devices without cables and wiring, in home and business networks, making it a most popular choice. Wi-Fi-enabled devices such as smartphones, tablets, laptops, and smart home devices can be connected to the internet easily without the need for any physical connection, to a Wi-Fi modem or router. Wi-Fi also allows multiple devices to connect to the internet simultaneously, making it a convenient and cost-effective way to provide internet access in homes, offices, and public spaces. Even large proportion of the mobile data traffic is now delivered to the end user through Wi-Fi devices. Therefore, the demand devices capable to access internet wireless broadband though Wi-Fi, is growing at a phenomenal pace. Presently, there are almost 25 billion Wi-Fi connected devices in the world and almost 3 mobile device every person.

So, the wireless highways through which Wi-Fi traffic moves are congested and will continue to get more crowded. Main reasons are:

- (a) Every house is installed with one Wi-Fi modem and even few having more than one.
- (b) Many communities are served with public Wi-Fi.
- (c) Increased in demand of speed of internet requires wider channel.
- (d) Cellular operators are dumping traffic into the Wi-Fi spectrum, onto the unlicensed spectrum used by Wi-Fi.

So, Wi-Fi became a victim due to its own success and now it is the appropriate time for administrations to take action to improve things.

Presently, only two unlicensed frequency bands have been allocated for Wi-Fi.

- (a) 2.4 GHz band from 2400.00 to 2483.50 MHz = 83.50 MHz, having 3 channels of 20 MHz or 1 channel of 40 MHz.
- (b) 5.0 GHz band –Parts of 5150-5925 MHz (5 150-5 250 MHz, 5 250-5 350 MHz and 5 470-5 850 MHz) having 25 channels of 20 MHz or12 channels of 40 MHz or 6 channels of 80 MHz or 2 channels of 160 MHz.

So, only 883.50 MHz spectrum in 2.4 GHz and 5.0 GHz band has been allocated for unlicensed band for Wi-Fi. Studies have shown that there is a need of at least 2 GHz spectrum to meet the increased need to respond to increased home working, particularly in high human density

countries such as India. Currently unlicensed Wi-Fi spectrum is inadequate to meet out the growing demand.

So, to meet out the growing demand of Wi-Fi spectrum, it is proposed to harmonize the 1200 megahertz of spectrum available in the 6 gigahertz (GHz) band from 5.925 GHz to 7.125 GHz, to be assigned as unlicensed band for Wi-Fi devices. Unlicensed devices will share this spectrum with incumbent licensed services under rules that are carefully crafted to protect those licensed services and to enable both unlicensed and licensed operations to thrive throughout the band. More than 32 countries in the world including developed economies like USA, Canada, Australia, Japan and EU have already allotted the 5925-7125 MHz band for the use of unlicensed Wi-Fi.

The 6 GHz Wi-Fi spectrum is 1200 MHz wide (more than double the total size of the 2.4 GHz and 5 GHz spectrums) and supports up to 59 channels of 20 MHz or 29 channels of 40 MHz or 14 channels of 80 MHz or 7 channels of 160 MHz channels and 3 channels of 320 MHz. These channels are only accessible to new Wi-Fi 6E devices and enable gigabit Wi-Fi speeds and allow operations free from legacy Wi-Fi interference.

So, 6 GHz frequency band is uniquely suited to meet growing demand for Wi-Fi connectivity, as there is no alternative spectrum now or in the future.

IAFI through this draft new report would like to bring the issue for the consideration of the APT member countries and to support the issue in the upcoming AWG/WRC-23 to globally harmonization the 6 GHz frequency band from 5925 -7125 MHz, total 1200 MHz spectrum, as unlicensed frequency band for Wi-Fi. [AWG-31/INP-56Rev.1]

3. References

- [1] Aruba Whitepaper Technical Guide to Wi-Fi 6E and the 6 GHz band.
- [2] IEEE Standard for Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications," IEEE Std 802.11-2016 <u>http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6178212&isnumber=6178210</u>
- [3] FCC-20-51A1, In the Matter of Unlicensed Use of the 6 GHz Band Expanding Flexible Use in Mid-Band Spectrum Between 3.7 and 24 GHz, REPORT AND ORDER AND FURTHER NOTICE OF PROPOSED RULEMAKING, Adopted: April 23, 2020 Released: April 24, 2020.
- [4] Frequency Sharing for Radio Local Area Networks in the 6 GHz Band, January 2018, Version 3, RKF Engineering Solutions

- [5] ECC Report 302, Sharing and compatibility studies related to Wireless Access Systems including Radio Local Area Networks (WAS/RLAN) in the frequency band 5925 - 6425 MHz.
- [6] Recommendation ITU-R RA.769-2: "Protection criteria used for radio astronomical measurements"
- M. Mehrnoush, C. Hu and C. Aldana, "AR/VR Spectrum Requirement for Wi-Fi 6E and Beyond," in IEEE Access, vol. 10, pp. 133016-133026, 2022, doi: 10.1109/ACCESS.2022.3231229.
- [8] Cisco Whitepaper IEEE 802.11ax: The Sixth Generation of Wi-Fi White Paper.
- [9] Intel Corporation Next generation Wi-Fi Wi-Fi 7 and beyond

[AWG-31/INP-95]

4. Background

The demand for wireless broadband is increasing at a phenomenal pace, as citizens and businesses groups are increasingly relying on Internet connectivity. To meet this demand, the various administrations are continuously evaluating the use of the spectrum available for the use of Wi-Fi in more efficient usage using a variety of methods, including unlicensed operations.

The 6 GHz band is comprised of allocations for Fixed Services, Fixed Satellite Services (FSS) and Mobile Services across sub-bands. Fixed microwave service licensees, specifically those operating point-to-point microwave links for supporting variety of critical services commercial, private entities, and public safety agencies, are the largest user group in the 6 GHz band.

The Fixed Satellite Service (FSS) (Earth-to-space) is allocated in all sub-bands of 6 GHz, except for the 7.075-7.125 GHz portion. FSS operations are heaviest in the 6 GHz band, which is paired with the 3.7-4.2 GHz, space-to-Earth frequency band. Predominant FSS uses of these frequencies include content distribution to television and radio broadcasters, including transportable antennas to cover live news and sports events, cable television and small master antenna systems, and backhaul of telephone and data traffic.

Considering the existing and anticipated congestion, many administrations decided to provide additional spectrum to complement spectrum where Wi-Fi is presently deployed, to ease any congestion so that businesses and consumers can take advantage of new data intensive applications. By making this spectrum available for unlicensed use, cable companies and wireless carriers started expanding their Wi-Fi hotspot networks to provide customers' access to even higher speed data connections, than they experience today and expand their networks in areas where they need additional capacity.

Many administrations allocated entire 6 GHz from 5925 – 7125 MHz, as unlicensed 3rd frequency band for Wi-Fi. So, a contiguous 1200-megahertz block of spectrum is now available

n many countries for the development of new and innovative high-speed, short range Wi-Fi devices.

[AWG-31/INP-56Rev.1] [AWG-31/INP-95] 5. Abbreviations and acronyms

[AWG-31/INP-56Rev.1]

Acronyms	Definition
AFC	Automated Frequency Coordination
АР	Access Point
BEL	Building Entry Loss
BSS	Basic Service Set
DFS	Dynamic Frequency Selection
DUT	Device Under Test
EIRP	Equivalent Isotopically Radiated Power
FS	Fixed Service
FSS	Fixed Satellite Service
LPI	Lower Power Indoor
PL	Path Loss
RAS	Radio Astronomy Services
RX	Receiver
SP	Standard Power
TX	Transmitter
ULS	Universal Licensing System
VLP	Very Low Power

[AWG-31/INP-95]

Wi-Fi	- Wireless Fidelity, most popular way of developing wireless local area
	network in home, office or any public place.
FSS	- Fixed Satellite Service
IMT	- International Mobile Telecommunications
WRC	- World Radiocommunication Conference
LTE	- Long Term Evolution
RLAN	- Radio Local Area Network, also known as WLAN or Wi-Fi
WAS	- Wireless Access System, use today for implementing wireless access

include cellular, cordless and wireless local area network systems.

[AWG-31/INP-56Rev.1] 6 Wi-Fi Technology used for RLAN networks

[Editors' Note: Current information will come under section 6 on WiFi Technology]

6.1 Spectrum demands for Wi-Fi networks.

hWi-Fi technology uses license-exempt spectrum and must allow adjacent uncoordinated networks to coexist whilst providing high service quality to users. But recently, the spectrum congestion for Wi-Fi networks has been acute due to the exponential growth of device numbers and data traffic. Since the WRC-2003, no new mid-band license-exempt spectrum has been made available for Wi-Fi. Furthermore, the 2.4 and 5 GHz Wi-Fi spectrum doesn't offer a sufficient number of wide channels for newer applications and services, and the supported narrow channels at 20 and 40 MHz are not capable of the throughputs offered by many current broadband access technologies (e.g. fiber, DOCSIS, and Fixed-Wireless services).

A study by Wi-Fi Alliance in 2017 showed that in order to maintain desired levels of performance, 1.5 GHz of new spectrum would be needed by 2025. Recognizing that lack of spectrum access threatens Wi-Fi's critical role to their countries' futures, policymakers are expanding spectrum access for Wi-Fi with a particular focus on the 6 GHz band (5.925 – 7.125 GHz).

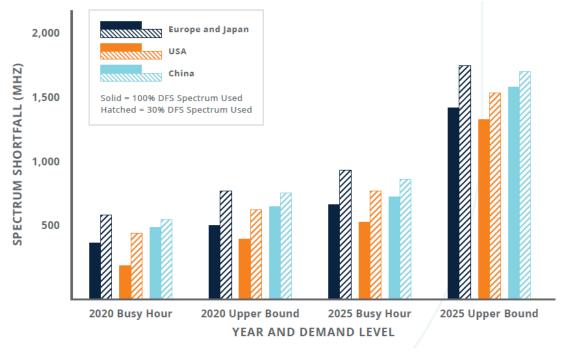


Figure 1 Predicted Wi-Fi spectrum shortfall⁴

⁴ Source: Quotient Associates for the Wi-Fi Alliance, 2017

[AWG-31/INP-56Rev.1] 6.1.1 Making more efficient use of spectrum in the 5 GHz band

Wi-Fi use is currently accessing 580 MHz of license-exempt spectrum in the 5 GHz band. Some of the available channels either have Dynamic Frequency Selection (DFS) requirements to protect military and meteorological radars in these frequencies, or are limited to indoor use only. [Editor's Note: include other 5Ghz bands to give full picture; also cover APT countries and better structure; use response]

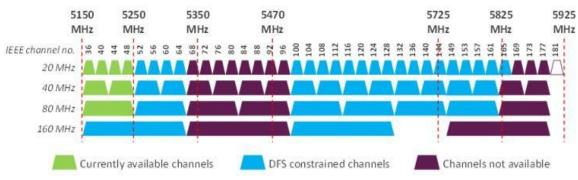


Figure 2 Wi-Fi channels in the 5 GHz band

At the World Radio Conference 2019 (WRC-19), the Radio Regulations were amended to allow limited outdoor RLAN use in the 5.15 - 5.25 GHz band: up to 1W with controlled use and by implementing antenna elevation masks that limit EIRP in the direction of satellite space stations.

Resolution-229 (WRC-19)⁵ provides guidance for administrators who want to deploy higher-power outdoor RLAN services in 5.15 - 5.25 GHz. This *Resolve* gives administrations flexibility to permit Wi-Fi stations, for indoor or controlled outdoor use, to operate up to a maximum EIRP of 30 dBm, while also mitigating the interference risk to Fixed Satellite Service (FSS) Earth-to-space communications with an EIPR mask at certain elevation angles.

After WRC-19, many administrations implemented Resolution-229. For instance, New Zealand regulator Radio Spectrum Management (RSM) updated its General User License for Short Range Device⁶ in 2020 by allowing 1W EIRP and outdoor use for 5.15 – 5.25 GHz. Similarly, Australia Communications and Media Authority (ACMA) consulted the industry in 2022 for its proposal in implementing this Resolution. ACMA proposed to allow 1W EIRP and outdoor use, as well as mandating an emission mask of a maximum of 125 mW (21 dBm) EIRP at any elevation angle above 30 degrees, as measured from the horizon⁷. In North America, ISED Canada and the FCC in the United States even permitted an EIRP up to 4W (36 dBm)⁸ in advance of WRC-19.

⁵ <u>https://www.itu.int/dms_pub/itu-r/oth/0C/0A/R0C0A00000F0076PDFE.pdf</u>

⁶ <u>https://gazette.govt.nz/notice/id/2022-go3100</u>

https://www.acma.gov.au/consultations/2022-10/new-arrangements-low-interference-potential-devices-consultation-352022

https://www.ecfr.gov/current/title-47/chapter-I/subchapter-A/part-15/subpart-E/section-15.407#p-15.407 (a)

Country	Regulatory requirement
US	1W maximum conducted power and maximum antenna gain 6 dBi, maximum
	power spectral density 17dBm/MHz;
	Maximum EIRP at any elevation angle above 30 degrees as measured from the
	horizon must not exceed 125 mW (21 dBm);
	Allows point to point system with 23dBi antenna gain
Canada	1W maximum conducted power and maximum antenna gain 6 dBi, maximum
	power spectral density 17dBm/MHz;
	Maximum EIRP at any elevation angle above 30 degrees as measured from the
	horizon must not exceed 125 mW (21 dBm);
	Allows point to point system with 23dBi antenna gain
New Zealand	1W maximum EIRP; EIRP mask ⁹ for elevation above horizon;
	indoor and outdoor
Australia	1W maximum EIRP; 17dBm/MHz
	Maximum EIRP at any elevation angle above 30 degrees as measured from the
	horizon must not exceed 125 mW (21 dBm);

Table 1 Regulatory requirement for RLAN operating in 5.15 – 5.35 GHz

For UNII-3 band, many regulators have decided that there is little risk of interference from indoor use of Wi-Fi in the frequency range (5725 – 5850 MHz) to incumbent radar systems and are relaxing or removing the DFS requirements. For instance, in 2020 Ofcom UK removed the DFS requirement for indoor RLAN/Wi-Fi operations up to 200 mW EIRP in the 5.8 GHz band.¹⁰ [Editor's Note: adjust terminology]

[AWG-31/INP-56Rev.1] 6.1.2 New spectrum in the 6 GHz band

[Editor's Note: add additional reasoning for why 6GHz and rationale for additional spectrum; also include WIFI 7 and 320 MHz channels]

The 6 GHz band encompasses 1200 MHz of spectrum from 5925 – 7125 MHz, compared to 83.8 MHz in the 2.4 GHz band and 570 MHz in sections of 5 GHz. Some countries and regions have enacted a 20 MHz guard band from 5925 – 5945 MHz to protect DSRC/CV2X services.

This allows for 59x20 MHz wide channels; 29x40 MHz; 14x80 MHz, or 7x160 MHz. The number of wide channels is especially significant, as gaps in allocated spectrum in the 5 GHz band limit 80 MHz channels to 7 and 160 MHz channels to 3, and wide channels are necessary for the highest data rates possible with the latest generations of Wi-Fi technology.

⁹ Resolve 5 of RESOLUTION 229 (REV.WRC-19)

¹⁰ https://www.ofcom.org.uk/__data/assets/pdf_file/0036/198927/6ghz-statement.pdf

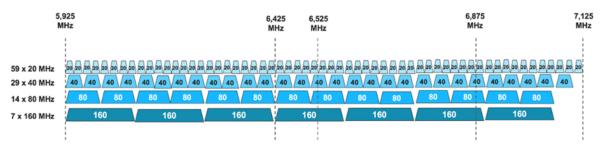


Figure 3 6GHz Wi-Fi Channels plan

The 6 GHz band is uniquely suited to address the demand for additional Wi-Fi spectrum for the following principal reasons:

a) The 6GHz band will be able to support wide channel bandwidth for dense Wi-Fi networks.

A shared license-exempt band requires multiple radio channels in order to distribute load and reduce co-channel interference (CCI). It is well known that 2.4 GHz with only 3 non-overlapping channels is heavily congested around the world. This is depicted on the left of Figure 4. It is commonly understood by the industry and academia that self-coordinated Wi-Fi requires no fewer than about seven to nine non-overlapping radio channels in a typical corporate or campus deployment to absorb current demand levels, as shown in the middle diagram of Figure 4. For large public venue environments with extreme loading levels such as stadia, arenas, university lecture halls, and airports research and years of experience have proven that 20 or more discrete channels are required for Wi-Fi to operate successfully and carry the tremendous levels of traffic at such venues. Every major enterprise Wi-Fi equipment manufacturer has historically published detailed design guidelines for such large venues calling for 20 MHz channels to be used, because only this narrowest channel width yielded a sufficient number of non-overlapping channels in the 5 GHz band.¹¹

The principle behind this phenomenon is that having fewer channels increases the probability of collisions between co-channel radio cells, even at low loading levels. An obvious reason for this is depicted in Figure 4, where nodes in a Wi-Fi network with small inter-cell distances can "hear" many more co-channel radios. But a more subtle effect is the resulting rise in the noise floor from "hidden" Wi-Fi cells. This increasing the collision probability and reduces the available signal-to-noise level, which in turn reduces the data rate, thereby making each transmission take longer (increased latency). By contrast, having more channels both reduces the absolute number of "hearable" co-channel cells, and helps keep the noise floor nearer the thermal limit, which maximizes data rates and therefore transmits data more quickly – requiring less airtime. This attribute of Wi-Fi enables well-designed networks with a sufficient number of channels to absorb extremely high demand surges.

¹¹ "Very High Density 802.11ac Networks", Aruba Networks, 2015,

https://higherlogicdownload.s3.amazonaws.com/HPE/MigratedAssets/Aruba_Very_High_Density_802.11ac_Networks_VRD.zip

The 5 GHz band is only able to provide 5x80MHz or 3x160MHz channels, which are not sufficient to deploy a useful Wi-Fi network. Network operators are forced to use narrower channels such as 40 MHz or even 20 MHz, which limit the peak data throughput under 600 Mbps for a typical device in even optimal RF conditions. Given that multi-gigabit broadband connections are being more and more widely adopted, narrow band Wi-Fi networks become the bottleneck of overall network performance and user experience.

The 1200 MHz of spectrum in the 6 GHz band yields an equivalent number of 80 MHz channels as there are 40 MHz channels in the 5 GHz band. With 1200 MHz of spectrum in the 6 GHz band, 80 MHz channels will become the default in the large majority of enterprise deployments. It even allows 7x160 MHz channels that can enable novel use cases like Augmented/Virtual Reality which require low latency and extremely high throughput.

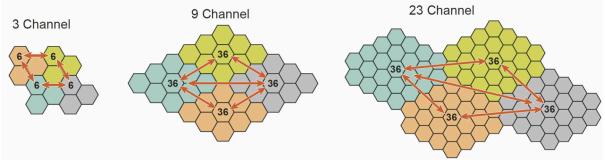
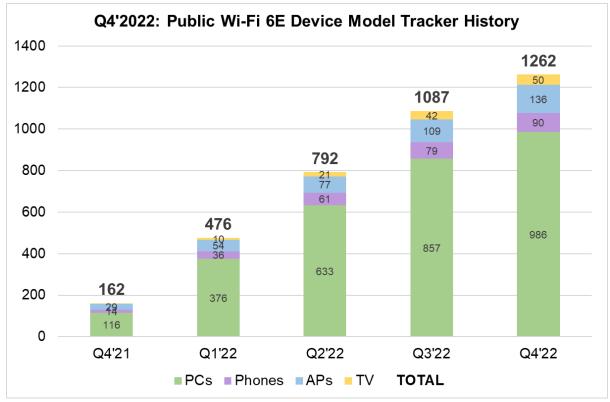


Figure 4 Inter-Cell distance increases with available channel count

b) The 6 GHz band does not need to support any legacy Wi-Fi technology.

Wi-Fi technology is backward compatible with previous generations. Legacy devices like Wi-Fi 4 and 5 can work together with devices supporting the latest Wi-Fi 6 standard. However, this backward compatibility can decrease the network performance, as the technology features provided by the latest Wi-Fi standard cannot be realised with legacy devices in the same network. The 6 GHz band would, for the first time, eliminate outdated and inefficient radio access technologies, permitting the far more spectrally efficient Wi-Fi 6E (and above) to operate without the burden of legacy radio interoperability. This will improve the user experience and spectral efficiency, which can only serve to further the adoption of Wi-Fi technologies.


[AWG-31/INP-56Rev.1]

6.2 Industry and regulatory development for 6 GHz Wi-Fi

Since the FCC opened the 6 GHz band for Wi-Fi, there has been a strong momentum of Wi-Fi 6E device ecosystem development. According to Intel's data tracker¹², the total number of Wi-Fi 6E-capable devices reached 1262 by the end of Q4 2022. The number includes PCs (by far the majority), phones, APs, and TVs. The count finished strongly for 2022 with the number of Wi-Fi 6E devices growing by more than 2.5 times from end of Q1 to end of Q4 last year. It is

12

https://wifinowglobal.com/news-and-blog/update-number-of-commercially-launched-wi-fi-6e-devices-r eaches-792-in-2q22/

forecasted that by 2025, Wi-Fi 6 and Wi-Fi 6E are expected to surpass 80 percent market share and dominate Wi-Fi connectivity in the smartphone segment.

Figure 5 Public Wi-Fi 6E device model track

[Editor's Note: Resolve issue of numbers vs percentage]

[AWG-31/INP-56Rev.1]

6.2.1 Equipment Classes for 6 GHz License-Exempt Operation

Wi-Fi 6E devices achieve the best possible performance while ensuring that important licensed incumbent services are not adversely affected. These incumbent services include Fixed Service (FS) links and Fixed Satellite Service (FSS) uplinks. Wi-Fi 6E achieves this goal by defining three separate operating classes for Wi-Fi 6E access points: Low Power Indoor (LPI), Standard Power (SP), and Very Low Power (VLP). Client device technical characteristics are a function of the type of access point they are connected to.

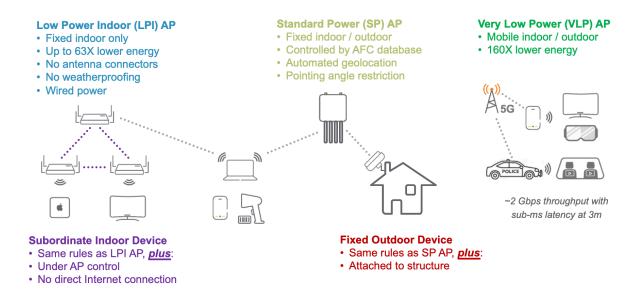


Figure 6 Device Classes in 6 GHz

Low Power Indoor Class

The most popularly used device class for Wi-Fi 6E is LPI. These will be the familiar home or enterprise APs and clients. By definition, these devices are indoors and are shielded by buildings to some extent so the power that leaks outside will be attenuated, which allows safe operation across the band at a power level only slightly lower than 5 GHz indoor Wi-Fi APs.

Depending on the regulatory requirement, LPI equipment can operate at a maximum EIRP of 23 dBm, 24 dBm or 30 dBm and is often defined in terms of a Power Spectral Density (PSD) of dBm/MHz. LPI APs can operate across the entire 6 GHz band, as their low EIRP is not posing any harmful interference to incumbents after building entry loss is subtracted. To ensure that these indoor-only units are not used outdoors, or with external high-gain antennas (which has the potential to cause interference), regulators typically provide a list of physical requirements for certifying an LPI AP:

- No connectors for external antennas
- No battery-powered operation
- Not weatherized
- Labeled for indoor use only

To further improve spectral efficiency and performance, direct communication between client devices (Client to Client) communications are also authorized by some regulators and under consideration by others.

Standard Power Class

The EIRP of a Standard Power AP is up to 36 dBm. Because of the increased risk of interference with incumbent services from a higher EIRP, there are certain regulatory requirements for SP APs to operate. First, depending on the incumbent service types, SP APs are only allowed to

operate in the certain frequency ranges within the overall 6 GHz band. Secondly, operation of SP requires an Automatic Frequency Coordination (AFC) service to calculate the channel availability and allowed EIRP at a specific location.

The AFC query-response protocol has been defined by the Wi-Fi Alliance¹³ and consists of an inquiry message from the AP and a response from the AFC server. An important information element in the inquiry is the AP's geolocation. There is no single method to accurately determine the AP's location; it is assumed that GPS or some other robust and reliable method is used. The AFC uses the AP's latitude, longitude, antenna height (above ground level) and some other information in the registration and inquiry messages, to calculate and provide to the AP a response containing the set of channels or frequency ranges and the maximum permissible power levels at which it may transmit without creating interference to nearby incumbent services.

In the US, FCC is considering ¹⁴direct communication between client devices (Client to Client) communications within Standard Power mode coverage area.

Very Low Power Class

VLP devices can operate both indoor and outdoor in the whole 6 GHz range. This allows use cases like mobile APs, mounted in vehicles or hotspots on smartphones. In most countries and regions, the maximum EIRP for a VLP AP is 14 dBm, with a PSD limit of 1dBm/MHz.

Client Devices

Client devices are expected to be limited in geography by APs. If there is no AP signal, devices cannot connect and will not transmit. Therefore, it is assumed that the AP is transmitting in an authorized manner, and the client can adjust its transmit power and channel with reference to the AP.

[AWG-31/INP-95]

6.2.1 Technical Conditions regarding use Wi-Fi in 6 GHz band:

Initially Wi-Fi networks operates in the unlicensed 2.4 GHz and later unlicensed 5 GHz bands was also open for Wi-Fi. The 2.4-GHz band works the best for indoor Wi-Fi use, as easily penetrates through walls and furniture, and signals generally travel farther at the same power level as they do in the 5-GHz band.

In the 2.4 GHz band, roughly 80 MHz frequency band is available for the Wi-Fi use. The channels are 20 or 22 MHz wide, so normally three nonoverlapping channels are existing. The situation is slightly different in Europe, where 13 channels are allowed, but still just three nonoverlapping channels, In Japan, there are 14 channels with four nonoverlapping channels.

¹³ <u>https://www.wi-fi.org/file/afc-specification-and-test-plans</u>

¹⁴ DA-21-7A1_Rcd.pdf (fcc.gov)

Signals in the 5-GHz band have a shorter range in the home, mostly because of the walls and furniture, but the band extends from 5.125 to 5.925 GHz (800 MHz), so 24 non-overlapping channel of 20MHz-wide each or 12 channels of 40 MHz wide or 6 channels of 80 MHz or 2 channels of 160 MHz wide channels can work.

In the Wi-Fi world, when two conversations collide, all the devices go quiet and then try to talk again a little while later. The amount of time they wait is determined by an exponentially increasing time delay, known as a backoff. With more collisions, the backoff increases, and the Wi-Fi becomes slower and less reliable. Today, congestion has increased so much in many regions making 2.4 GHz band unusable for transferring data at high rates.

Wi-Fi congestion may go even worse, as the mobile-phone carriers are planning to use the technology called as LTE-Unlicensed (LTE-U) or Licensed Assisted Access (LAA). It uses 4G LTE radios and routers to send and receive data via the same 5 GHz frequencies as used by unlicensed Wi-Fi.

So, to overcome the problem, many administrations allowed entire 6 GHz band from 5925 -7125 MHz band for the use of unlicensed Wi-Fi, with two types of operation.

- (a) Authorizing unlicensed standard-power access points in the band 5925-6875 MHz, through use of an AFC system. The AFC is designed to protect devices with fixed locations.
- (b) Opening the entire 6 GHz band for unlicensed indoor low power access points. By authorizing use of the entire 6 GHz band for indoor use, so 59 channels of 20 MHz or 29 channels of 40 MHz or 14 channels of 80 MHz or 7 channels of 160 MHz channels or 3 channels of 320 MHz are possible to expand capacity and performance capabilities.

So, the 6 GHz Wi-Fi or Wi-Fi 6E extends the same Wi-Fi capabilities into the 6 GHz band to allow greater efficiency, higher throughput, and increased security. 6 GHz Wi-Fi is specifically designed for gigabit broadband and immersive wireless applications. Considering the vast capabilities Wi-Fi 6E, many countries around the World have already delicensed 6 GHz band for Wi-Fi.

[AWG-30/INP-27]

X Technical conditions for authorising WAS/RLAN in the 6 GHz frequency band

When making 6 GHz frequency band available for WAS/RLAN under a general authorisation / licence exemption / unlicensed regimes technical conditions need to be applied for coexistence with existing radio systems, particularly fixed links. There are different options that have been applied by regulators and regions these options are contained below.

[AWG-30/INP-27]

X.1 Option 1 Technical conditions for authorising the 5 925 -6 425 MHz frequency band

Permitted frequency band	Category	Maximum Power (EIRP)	Max. Power Density (EIRP)	Conditions			
5 925 – 6 425 MHz	Low Power Indoor (LPI)	24 dBm (250 mW)	11 dBm / MHz (12.6 mW /MHz)	Indoor use only within a building or within an enclosed space having attenuation characteristics at least equivalent to those of a building			
	Very Low Power (VLP)	14 dBm (25.11 mW)	1 dBm / MHz (1.26 mW / MHz)	No indoor restriction (i.e. Outdoor is permitted)			

 Table 1: Technical conditions for 6 GHz WAS/RLAN

[AWG-31/INP-56Rev.1]

6.2.2 Regulatory requirements for 6GHz RLAN

<u>Australia</u>

In 2022, ACMA updated the LIPD class license arrangements to support RLANs in the 5925 – 6425 MHz range as the first stage of its 6 GHz band planning. The devices operating within that frequency range are allowed to operate at two different power limits: 24 dBm (11 dBm/MHz), if only used indoors or 14 dBm (1 dBm/MHz) in all locations.

<u>Brazil</u>

In Brazil, the whole 6 GHz band (5925 – 7125 MHz) available for license-exempt RLAN use, which includes two device classes: LPI (30 dBm) and VLP (17 dBm) devices. Brazil Anatel is currently working on enabling SP mode under supervision of AFC System.

<u>Canada</u>

Canada allows license-exempt RLAN use across the entire 6 GHz, with 3 different power levels available across different portions of that range:

- 14 dBm "very low power"
- 30 dBm "low power" for indoor use only
- 36 dBm for standard power devices under AFC control.

The AFC is to be compatible – as much as possible – with the US version, to help deal with cross-border coordination.

"Listen-before-talk" protocols are to be implemented on all low and very-low power devices. SP APs under the control of an AFC system will be permitted to operate on a license-exempt basis in the 5925 – 6875 MHz frequency range. For the protection of FSS satellite-based receivers from Standard Power devices operating outdoors, the SP APs' maximum EIRP must be under 125 mW at elevation angles above 30 degrees above the horizon – consistent with Canada's experience in other bands.

South Korea

In South Korea, the whole 6 GHz band is authorised for unlicensed RLAN use. The use includes two device classes: low power indoor use – maximum 24 dBm and 2 dBm/MHz, and very low power (14 dBm) devices were also included but limited to operate in the lower 6 GHz band. South Korea has also stated their intention to authorize Client to Client mode and Standard Power in conjunction with a Korean Frequency Coordination system in the future.

United States

The Federal Communications Commission (FCC) made the entire 6 GHz band (5925 – 7125 MHz) for Wi-Fi 6E and other unlicensed uses in the US in April 2020.

The FCC authorizes indoor low-power operations over the full 1200 MHz and Standard Power devices in 850 MHz of the 6 GHz band (the other ranges being excluded due to the presence of mobile incumbent services). The FCC requires the SP APs to use an AFC¹⁵ to prevent interference to incumbent services.

For Standard Power outdoor use, the maximum EIRP at any elevation angle above 30 degrees as measured from the horizon must not exceed 21 dBm.

Devices Class	Operating bands	Maximum EIRP	Maximum EIRP Power Spectral Density
Standard-Power AP	U-NII-5 (5925 - 6425 MHz)	36 dBm	23 dBm/MHz
(AFC controlled)	U-NII-7 (6525 - 6875 MHz)		
Client Connected to		30 dBm	17 dBm/MHz
Standard-Power AP			
Low-Power (indoor	U-NII-5 (5925 - 6425 MHz)	30 dBm	5 dBm/MHz
only)	U-NII-6 (6425 - 6525 MHz)		
Client Connected to	U-NII-7 (6525 - 6875 MHz)	24 dBm	-1 dBm/MHz
Low-Power AP	U-NII-8 (6875 - 7125 MHz)		

Table 2 Maximum EIRP for 6 GHz unlicensed devices in the US

European Union

In 2020, EU authorized¹⁶ License Exempt LPI and VLP operation in the 5925 – 6425 MHz range and currently studying the 6425 – 7125 MHz range. The devices operating within that frequency

¹⁵ Federal Register, <u>Unlicensed Use of the 6 GHz Band</u>

¹⁶ https://docdb.cept.org/download/50365191-a99d/ECC%20Decision%20(20)01.pdf

range are allowed to operate at two different power limits: 23 dBm (10 dBm/MHz), if only used indoors or 14 dBm (1 dBm/MHz) in all locations. EU also authorized Client to Client operation under LPI mode.

<u>ATU</u>

In July of 2021, African Telecommunications Union (ATU) recommended License Exempt LPI and VLP operation in the 5925 – 6425 MHz range. The devices operating within that frequency range are allowed to operate at two different power limits: 23 dBm (10 dBm/MHz), if only used indoors or 14 dBm (1 dBm/MHz) in all locations.

<u>Colombia</u>

In Nov 2022, Colombia ANE announced¹⁷ allocation of the entire 6GHz band (5925 –7125MHz) for License Exempt LPI operation at maximum power level of 30 and 24 dBm (5 and -1 dBm/MHz) for Access Point and Client devices respectively.

Argentina

In May 2023, Argentina Enacom announced¹⁸ allocation of the entire 6GHz band (5925 –7125MHz) for License Exempt operation. Regulatory details are not announced yet.

Saudi Arabia

In March of 2021, Saudi Arabia allocated the entire 6GHz band (5925-7125MHz) for License Exempt LPI operation at maximum power level of 30 and 24 dBm (10 dBm/MHz) for Access Point and Client devices respectively. Work on SP and VLP modes are ongoing.

More countries to be added...

[AWG-31/INP-56Rev.1]

6.2.3 Sharing with incumbent services in the 6 GHz band

The 5925 – 7125 MHz frequency range is primarily allocated to Fixed Service (FS), Fixed Satellite Service (FSS) and Mobile Service (MS). The 6650 – 6675 MHz frequency range is also used by the Radio Astronomy Service (RAS). Although there is no primary allocation, ITU Radio Regulation requires administration to protect RAS at 6650-6675.2 MHz in its footnote 5.149.

¹⁷ Wifi 6: Sergio Massa launched a program to improve Internet connectivity throughout the country - Infobae

¹⁸ Wifi 6: Sergio Massa launched a program to improve Internet connectivity throughout the country -Infobae

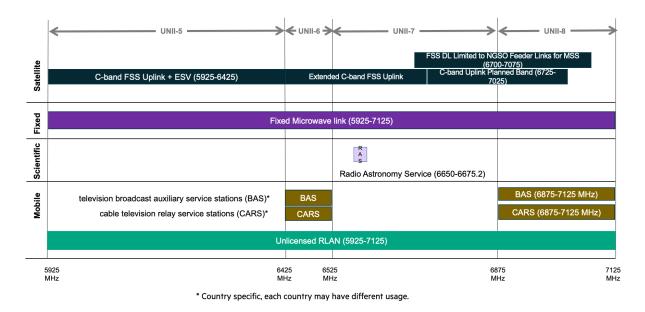


Figure 7 Current use of 5925 – 7125 MHz

For protecting FSS, studies showed interference to noise ratio (I/N) into FSS receivers was -21.9 dB, well below the applicable interference protection criteria (IPC) and significantly less than the interference FSS presently receives from existing FS microwave transmissions¹⁹.

For protecting FS, various studies show LPI and VLP can co-exist with FS without presenting a significant risk of harmful interference. For SP operation, it requires the AFC to automatically (with frequent updates) coordinate license-exempt operations while protecting nearby FS receivers. AFC systems use the RLAN APs' locations and other information to calculate whether any of the FS incumbents in the regulatory licensing database might be affected and then returns to the SP APs the allowed power and frequency parameters.

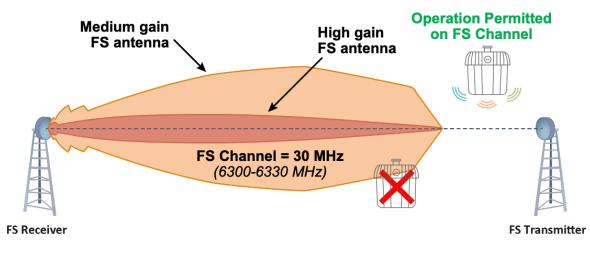


Figure 8 SP AP use AFC to coordinate with FS

¹⁹ RKF Report - Frequency Sharing for Radio Local Area Networks in the 6 GHz Band

For protecting RAS, an I/N threshold can be used to derive a contour around the RAS site following applicable ITU-R Recommendations²⁰ and taking into account the details of the site and possibly the typical observation schedule. The contours, which can be considered as a coordination zone or exclusion zone, represent a zone which needs to be managed by the regulator. Taking the FCC's requirement as an example, the exclusion zone sizes are based on the radio line-of-sight and determined using 4/3 earth curvature and the following formula:

 $dkm_{los} = 4.12 * (sqrt(H_{tx}) + sqrt(H_{rx})),$

where H_{tx} is the height of the license-exempt standard power access point or fixed client device and H_{tx} is the height of the radio astronomy antenna in meters above ground level.

The AFC will then exclude the RAS frequencies in its responses to SP APs located within the protection contour.

Depending on each country, portions of this band are also used for public safety and electronic news gathering applications such as TV Broadcast Auxiliary and Cable Relay Services, which are under Mobile Service type. These bands are less suited for Standard Power and AFC coordination because the usage patterns are more dynamic, so Standard Power is not allowed in these frequency ranges.

[AWG-31/INP-95]

6.2.3. Usage of the 5925 – 7125 MHz spectrum

As per the Radio Regulation, 2020, 6 GHz has been allocated for the following services

S. No.	Frequency Band	Allocated on Primary basis	Region
1	5925 – 6700 MHz	FIXED, FIXED SATELLITE (Earth to space), MOBILE	Globally
2	6700 – 7075 MHz	FIXED, FIXED SATELLITE (Earth to space), MOBILE	Globally
3.	7075 – 7125 MHz	FIXED, MOBILE	Globally

Some administrations were regularly pursuing in various ITU meeting for allocation of mid band spectrum (6 GHz) for IMT

²⁰ Recommendation ITU-R RA.769-2: "Protection criteria used for radio astronomical measurements"

China, Russia and the African Telecommunications Union (ATU) were the main proponents at WRC-19 for the inclusion of Agenda item for WRC-23, for allocation of additional 6 GHz spectrum or IMT.

As per the decision taken in WRC-19 vide Agenda Item 1.2, ITU-R was requested to consider identification of the frequency bands 3 300-3 400 MHz, 3 600-3 800 MHz, 6 425-7 025 MHz, 7 025-7 125 MHz and 10.0-10.5 GHz for International Mobile Telecommunications (IMT), including possible additional allocations to the mobile service on a primary basis.

Six frequency bands were addressed under this agenda item: Band 1 (3 300-3 400 MHz (Region-1)), Band 2 (3 300-3 400 MHz (Region 2)), Band 3 (3 600-3 800 MHz (Region 2)), Band 4 (6 425-7 025 MHz (Region 1)), Band 5 (7 025-7 125 MHz (Globally)) and Band 6 (10.0-10.5 GHz (Region 2)).

Now, following 6 GHz bands are under consideration in the upcoming meeting of WRC-23 likely to be held in Nov, 2023, to consider

Band -4 (6 425 - 7 025 MHz) for Region-1 (Europe, Russia, Africa, Middle East) and

Band-5 (7 025 -7 125 MHz) for the use of IMT.

[AWG-31/INP-56]

6.3 Use cases for Wi-Fi 6E and Wi-Fi 7

With numerous 160 MHz channels in the 6 GHz band, Wi-Fi 6E delivers the fastest Wi-Fi ever, enabling multi-gigabit low latency connections. These high throughput connections are essential to support key use cases today and into the future.

Multi-gigabit Wi-Fi venue capacity

The 6 GHz spectrum allows for a large number of wide band channels. This can help to avoid the excessive collisions and contention for airtime that has become normal in these types of venues. For instance, the Chase Center seats 18064 fans of the National Basketball Association's Golden State Warriors. The arena also hosts concerts, comedians and other events. The Chase Center has hosted numerous sold-out events since its opening in 2019, including every Warriors game and the 2022 NBA Finals, which saw a peak of over 3.80 TB in use, with over 10000 unique devices. While hosting the 2022 NCAA Western Regional, the arena experienced a peak of over 4.05 TB.

Prior to the start of the 2022-2023 NBA season, the Chase Center deployed more than 250 Wi-Fi 6E APs to provide comprehensive Wi-Fi coverage across the arena. The installation will provide fans a more immersive experience.

Industrial and campus network

Because of their inherent features like flexibility, scalability, low latency, deterministic throughput, and ease of installation, Wi-Fi 6E and Wi-Fi 7 will be foundational connectivity

enablers of Industry 4.0. They will be utilized for direct control of machines and other industrial appliances. Managing and monitoring of the rapidly reconfigurable, connected factories will become a reality.

The Health Care sector will also realize significant advancements from Wi-Fi 6E and Wi-Fi 7. With the introduction of the 6 GHz band, guest traffic and enterprise traffic can be carried on different radios and on different channels. Thus, high priority clinical network traffic is not impeded by competing general use traffic – such as guest Internet access. High capacity and low latency Wi-Fi 6E/7 will act as enablers of Advanced Medical tools, devices and smart medical wearables. Monitoring and managing hospitals using these digital technologies, will become more accurate, faster and more reliable.

Public Transport system, high density client devices environment

The transport sector will certainly experience massive improvements in connectivity after the deployment of Wi-Fi in the 6 GHz band. This is evidenced by the recent Wi-Fi network upgrade in Seoul. The average Wi-Fi speed on Seoul subway trains was 71 Mbps, which is significantly lower than the download speeds in Seoul's subway stations, where commuters can expect a blistering 367 Mbps download speed. In 2022, the mobile carriers in Korea installed Wi-Fi 6E routers on board the subway trains, together with mmWave base stations along the tracks for Wi-Fi 6E backhaul and ten mmWave customer premises equipment (CPE) on the trains themselves. According to the Ministry of Science and ICT, with the introduction of Wi-Fi 6E, subway commuters will have a more reliable internet connection, with speeds 10 times faster than the previous Wi-Fi.

Low-latency Wi-Fi calling, video conference and Augmented Reality /Virtual Reality (AR/VR)

Low latency is key to seamless experiences in real-time applications like videoconferencing and gaming. The wideband channels in the 6 GHz band will enable time-sensitive services like high definition audio and video conferencing. It will also support technologies like Virtual Reality, Cloud Gaming and Interactive Applications.

Today, AR and VR are changing both businesses functions and personal entertainment. From education and ecommerce to healthcare and construction, AR/VR can help to reduce training and operational costs and improve the productivity of workers and students.

AR/VR applications require high throughput and sub 10ms levels of latency. A delay in transmission/reception can cause problems for many, including desynchronization between connected devices that can disrupt the expected behaviour. These performance requirement will only be achieved with multiple wideband Wi-Fi channels. Academic analysis shows the significance of 1200 MHz of spectrum availability for supporting AR/VR applications in high-density large-scale scenarios and that 500 MHz of spectrum is not enough to support AR/VR applications²¹²².

²¹ M. Mehrnoush, C. Hu and C. Aldana, "AR/VR Spectrum Requirement for Wi-Fi 6E and Beyond," in IEEE Access, vol. 10, pp. 133016-133026, 2022, doi: 10.1109/ACCESS.2022.3231229.

²² https://www.intel.com/content/www/us/en/wireless-network/spectrum-needs-of-wi-fi-7.html

Rural connectivity

Wi-Fi is one of the most economical and fastest ways to provide connectivity in rural areas. The operation in license-exempt frequency bands, higher data rates, ease and lower cost of deployment, and lower operational and maintenance costs are key factors driving the deployment of Wi-Fi and proprietary license-exempt technologies in rural areas around the world.

A high-capacity data link can be established to a central point with a fiber point of presence, a satellite link or a microwave point-to-point backhaul. The point-to-point backhaul may be in-band using the License Exempt 6GHz frequency. This data link could then be reticulated throughout the township via Wi-Fi, delivering the same quality of service experienced in metropolitan areas. This method of broadband access is particularly helpful for remote towns/villages and low-income communities, where there is an acute need for broadband access but not a large enough market to justify licensed spectrum or wired solutions.

[AWG-31/INP-95]

6.4. Channel Arrangements for RLAN:

RLAN (Radio Local Area Network) is a type of wireless communication technology that allows devices to communicate with each other over a local area network (LAN) using radio frequency (RF) signals. RLANs are also commonly referred to as WLANs (Wireless Local Area Networks) or Wi-Fi networks.

The basic operation of RLAN involves a wireless access point (AP) or router that acts as a central hub for wireless devices to connect to the network. The AP is connected to the wired LAN and serves as a bridge between the wired and wireless networks.

When a wireless device, such as a laptop or smart phone, wants to connect to the RLAN, it sends a request to the AP to join the network. The AP authenticates the device and assigns it an IP address. Once the device is connected, it can communicate with other devices on the network and access the Internet.

The RLAN network are secured as using various encryption and authentication protocols, such as WPA2 (Wi-Fi Protected Access II) and 802.1x. These protocols provide protection against unauthorized access and ensure the confidentiality and integrity of the data transmitted over the network.

Radio local area networks (RLANs) systems are quickly emerging as a preferred access technology. RLAN uses different frequency bands for communication, such as the 2.4 GHz and 5 GHz bands. RLAN consortium proposes to introduce unlicensed Wireless point to point and point to multipoint devices into the 5.925 to 7.125 GHz band.

In wireless communication systems, channel assignment refers to a process of allocating radio frequency channels to different users or devices in order to optimize the use of the available spectrum and minimize interference.

There are several approaches to channel assignment in RLANs, including: -

- (a) Fixed channel assignment: In this approach, each AP is assigned a fixed channel that is pre-determined based on factors such as signal strength, interference level, and available bandwidth.
- (b) Dynamic channel assignment: In this approach, the channel assignment is dynamically adjusted based on the current network conditions, such as the number of active users and the level of interference.
- (c) Channel hopping: In this approach, the APs or wireless devices periodically switch channels in order to avoid interference and improve overall network performance.

7. Other technologies used for RLAN networks

[Editor's note: To include other RLAN technologies]

[AWG-31/INP-95]

7.X. Channel Arrangements for WAS:

Wireless Access Systems (WAS) are defined as end-user radio connections to public or private core networks. Technologies in use today for implementing wireless access include cellular, cordless telecommunication, and wireless local area network systems.

WAS typically uses cellular radio frequencies and protocols such as GSM, CDMA or LTE to provide wireless connectivity to devices, and it is often used in mobile phones, tablets, and other mobile devices.

Wireless Access Systems (WAS) are defined as end-user radio connections to public or private core networks. Technologies in use today for implementing wireless access include cellular, cordless telecommunication, and wireless local area network systems.

The basic operation of WAS involves a network of base stations, or cell sites, that are strategically located to provide coverage over a particular area. Each cell site is equipped with one or more antennas that transmit and receive wireless signals to and from mobile devices within the coverage area.

When a mobile device wants to connect to the cellular network, it searches for an available cell site and sends a signal requesting access. The cell site authenticates the device and assigns it a unique identifier, such as a mobile phone number or subscriber identity module (SIM) card. Once the device is connected, it can communicate with other devices on the network and access the Internet or other network services. The wireless signals are encoded and modulated using various techniques to ensure reliable and secure communication.

The WAS network can be secured using various encryption and authentication protocols, such as Advanced Encryption Standard (AES) and Transport Layer Security (TLS). These protocols provide protection against unauthorized access and ensure the confidentiality and integrity of the data transmitted over the network.

WAS uses different wireless protocols and frequencies, depending on the technology used by the cellular network operator. For example, in case of GSM (Global System for Mobile Communications) standard, it uses a combination of time division multiple access (TDMA) and frequency division multiple access (FDMA) to divide the wireless spectrum into channels that can be shared by multiple users.

Overall, WAS provides a convenient and reliable way for mobile devices to connect and communicate over a wireless network, and it is widely used in cellular networks around the world.

Channel assignment in WAS (Wireless Access System) is the process of assigning frequencies or channels to different base stations, or cell sites, in a cellular network to avoid interference and ensure efficient use of the available wireless spectrum. The goal of channel assignment is to minimize the number of channels used while ensuring that each cell site has sufficient channels to serve its users. This is because the wireless spectrum is a limited resource, and it must be shared among all the cell sites in the network.

There are different channel assignment strategies that can be used in WAS, depending on the technology used by the cellular network operator. One common approach is the fixed channel allocation (FCA) strategy, where a fixed set of channels is assigned to each cell site, and the channels are reused across the network.

Another approach is the dynamic channel allocation (DCA) strategy, where channels are dynamically allocated to cell sites based on the traffic load and channel availability. This approach can help to optimize the use of the available spectrum and improve network efficiency.

In WAS, channel assignment can also be influenced by other factors such as the physical environment, the distance between cell sites, and the number of users in a particular area. In urban areas with high user density, for example, smaller cell sites may be used to provide better coverage and capacity, and more channels may be assigned to these sites to accommodate the higher traffic.

Overall, channel assignment is a critical aspect of WAS network design and optimization, and it requires careful planning and management to ensure optimal network performance and user experience.

[AWG-31/INP-56Rev.1] [AWG-31/INP-95]

8. Summary

[AWG-31/INP-95]

Wi-Fi is optimized for high performance indoor, and therefore delivers the bulk of the world's data traffic, including most data traffic on mobile devices. Demand for Wi-Fi will continue to grow with increased fiber deployments and cellular generations.

Wi-Fi 6E is a resounding success and by 2024, there will be billions of devices installed globally able to operate from 5.925 to 7.125 GHz. Only countries that allow Wi-Fi access to the entire 6 GHz spectrum range will be most benefited.

Wi-Fi 7 and Wi-Fi 8 will depend on 6GHz access, and 320 MHz channels will be optimized for demanding emerging use cases.

6 GHz frequency band from 5925 – 7125 MHz is perfectly suited for Wi-Fi to continue to deliver the connectivity users need, there is no alternative spectrum for Wi-Fi, and 6 GHz is unsuitable for IMT.

As many countries in all regions are deploying Wi-Fi in 6 GHz, so 5G networks are not feasible in 6 GHz. Therefore, frequency harmonization for IMT/5G cannot be achieved in 6 GHz, even no interoperability. Market fragmentation precludes economies of scale, which is necessary for a viable 5G ecosystem in 6 GHz, as massive investments are needed to design and produce cellular chipsets for 6 GHz, to integrate chipsets into devices and bring them to market, to deploy IMT technology network and to operate IMT network. At present, no ecosystem is available for the IMT in 6 GHz band nor likely to come in near future.

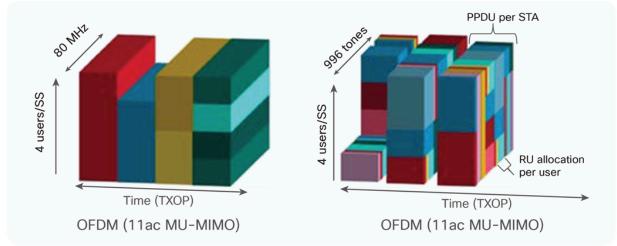
IAFI through this new report would like to bring the issue for the consideration of the APT member countries to support the issue in the upcoming AWG/WRC-23 to globally harmonization the 6 GHz frequency band from 5925 -7125 MHz, total 1200 MHz spectrum, as unlicensed frequency band for Wi-Fi.

[AWG-31/INP-56Rev.1]

Annex 1

Technology features in IEEE 802.11ax (Wi-Fi 6/6E) and IEEE 802.11be (Wi-Fi 7)

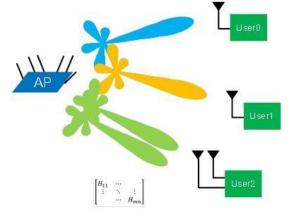
1. IEEE 802.11ax (Wi-Fi 6/6E)


IEEE 802.11ax, officially marketed by the Wi-Fi Alliance as Wi-Fi 6 (2.4 GHz and 5 GHz) and Wi-Fi 6E (6 GHz), is an IEEE standard for wireless local-area networks (WLANs) and the successor of 802.11ac. It is also known as High Efficiency Wi-Fi, for the overall improvements to Wi-Fi 6 clients in dense environments. The technology is designed to operate in license-exempt bands between 1 and 7.125 GHz, including the 2.4 and 5 GHz bands already in common use as well as the much wider 6 GHz band.

There are a number of features in IEEE 802.11ax with the main design goal to enhance throughput-per-area in high-density scenarios, such as corporate offices, shopping malls and dense residential apartments.

1.1 Downlink and uplink OFDMA

OFDMA is one of the more complex features in 802.11ax. It allows a single transmission (for downlink OFDMA, the access point transmits) to be split by frequency within a channel, such that different frames addressed to different client devices use groups of subcarriers. Uplink OFDMA is equivalent to downlink OFDMA, but in this case multiple client devices transmit simultaneously, on different groups of subcarriers within the same channel.


In 802.11ac, Wi-Fi channel was broken down into a collection of smaller OFDM sub-channels and at any given point in time, a single user is allocated all those sub-carriers in each PPDU. However, this allocation method does not provide the best spectrum efficiency as each data traffic may not necessarily require the full bandwidth to transmit. In 802.11ax OFDMA (802.11ax) is introduced to enhance the efficiency, individual groups of subcarriers are individually allocated to clients as resource units on a per-PPDU basis.

1.2 Downlink and uplink multi-user MIMO

The downlink version extends an existing 802.11ac feature where an access point determines that multipath conditions allow it to send, in a single time-interval, frames to different client devices. 802.11ax increases the size of downlink MU-MIMO groups, allowing more efficient operation. Uplink multi-user MIMO is a new addition to 802.11ax, but it is deferred to wave 2: like uplink OFDMA, the access point must coordinate the simultaneous transmissions of multiple clients.

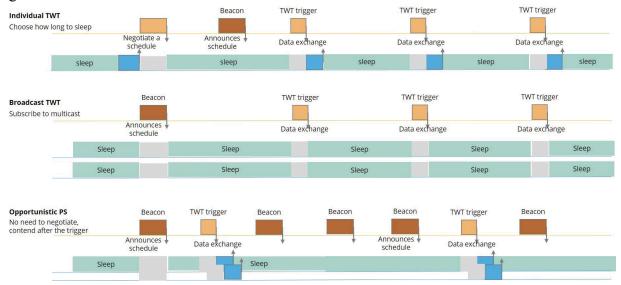
- Figure 10 AP using MU-MIMO beamforming to serve multiple users located in spatially diverse positions
- 1.3 Transmit beamforming

This is another existing feature where an access point uses a number of transmit antennas to land a local maximum signal on a receiver's antennas. It improves data-rates and extends range.

1.4 Higher order modulation

802.11a/g introduced 64-QAM, and 802.11ac 256-QAM: in 802.11ax, the highest-order modulation is extended to 1024-QAM. This increases peak data-rates under good conditions (high SNR). OFDM symbols, subcarrier spacing and FFT size are all changed to allow efficient operation of small OFDMA subchannels: these changes allow an increase in the length of guard interval without loss of symbol efficiency.

Table 3 802.11ax selected rates (Mbps, short GI)


MCS	Modulation & Rate	20 MHz 1x SS	20 MHz 2x SS	20 MHz 4x SS	20 MHz 8x SS	40 MHz 1x SS	40 MHz 2x SS	40 MHz 4x SS	40 MHz 8x SS	80 MHz 1x SS	80 MHz 2x SS	80 MHz 4x SS	80 MHz 8x SS
0	BPSK 1/2	8.6	17.2	34.4	68.8	17.2	34.4	68.8	137.6	36.0	72.1	144.1	288.2
1	QPSK 1/2	17.2	34.4	68.8	137.6	34.4	68.8	137.6	275.3	72.1	144.1	288.2	576.5
2	QPSK 3/4	25.8	51.6	103.2	206.5	51.6	103.2	206.5	412.9	108.1	216.2	432.4	864.7
3	16-QAM 1/2	34.4	68.8	137.6	275.3	68.8	137.6	275.3	550.6	144.1	288.2	576.5	1,152.9
4	16-QAM 3/4	51.6	103.2	206.5	412.9	103.2	206.5	412.9	825.9	216.2	432.4	864.7	1,729.4
5	64-QAM 1/2	68.8	137.6	275.3	550.6	137.6	275.3	550.6	1,101.2	288.2	576.5	1,152.9	2,305.9
6	64-QAM 3/4	77.4	154.9	309.7	619.4	154.9	309.7	619.4	1,238.8	324.3	648.5	1,297.1	2,594.1
7	64 QAM 5/6	86.0	172.1	344.1	688.2	172.1	344.1	688.2	1,376.5	360.3	720.6	1,441.2	2,882.4
8	256-QAM 3/4	103.2	206.5	412.9	825.9	206.5	412.9	825.9	1,651.8	432.4	864.7	1,729.4	3,458.8
9	256-QAM 5/6	114.7	229.4	458.8	917.6	229.4	458.8	917.6	1,835.3	480.4	960.8	1,921.6	3,843.1
10	1024-QAM 3/4	129.0	258.1	516.2	1,032.4	258.1	516.2	1,032.4	2,064.7	540.4	1,080.9	2,161.8	4,323.5
11	1024-QAM 5/6	143.4	286.8	573.5	1,147.1	286.8	573.5	1,147.1	2,294.1	600.5	1,201.0	2,402.0	4,803.9

1.5 Outdoor operation

A number of features improve outdoor performance. The most important is a new packet format where the most sensitive field is now repeated for robustness. Other features that contribute to better outdoor operation include longer guard intervals and modes that introduce redundancy to allow for error recovery.

1.6 Reduced power consumption

Existing power-save modes are supplemented with new mechanisms allowing longer sleep intervals and scheduled wake times. An 802.11ax AP can negotiate with the participating STAs the use of the Target Wake Time (TWT) function to define a specific time or set of times for individual stations to access the medium. The STAs and the AP exchange information that includes an expected activity duration. This way the AP controls the level of contention and overlap among STAs needing access to the medium. 802.11ax STAs may use TWT to reduce energy consumption, entering a sleep state until their TWT arrives. Furthermore, an AP can additionally devise schedules and deliver TWT values to STAs without individual TWT agreements between them.

Figure 11 TWT power-save options in 802.11ax

Also, for IoT devices, a 20MHz-channel-only mode is introduced, allowing for simpler, less powerful chips that support only that mode.

1.7 Spatial re-use with color codes

To improve the system level performance and the efficient use of spectrum resources in dense deployment scenarios, the 802.11ax standard implements a spatial reuse technique. STAs can identify signals from overlapping Basic Service Sets (BSS) and make decisions on medium contention and interference management based on this information.

When an STA that is actively listening to the medium detects an 802.11ax frame, it checks the BSS color bit or MAC address in the MAC header. If the BSS color in the detected PPDU is the same color as the one that its associated AP has already announced, then the STA considers that frame as an intra-BSS frame.

However, if the detected frame has a different BSS color than its own, then the STA considers that frame as an inter-BSS frame from an overlapping BSS. The STA then treats the medium as BUSY only during the time it takes the STA to validate that the frame is from an inter-BSS, but not longer than the time indicated as the length of the frame's payload.

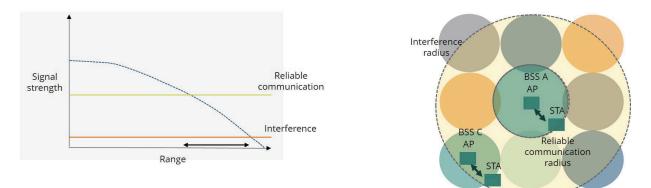


Figure 12 BSS coloring: co-channel interference

BSS coloring works by distinguishing between "same BSS" and "distant BSS" transmissions and applying different CSMA/CA power thresholds. This allows simultaneous transmissions in the different cells, as, in addition to two power thresholds, each client device keeps two network allocation vectors (NAV's) which tell it how long the medium will be occupied.

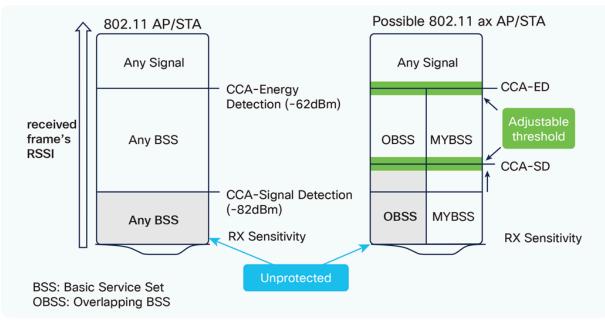


Figure 13 OBSS and BSS Color operation

2. IEEE 802.11be (Wi-Fi 7)

IEEE 802.11be, dubbed Extremely High Throughput (EHT), is the next amendment of the IEEE 802.11 standard, which will be designated Wi-Fi 7. Wi-Fi 7 features will expand upon the innovation of Wi-Fi 6 and Wi-Fi 6E, focuse on WLAN indoor and outdoor operation with stationary and pedestrian speeds in the 2.4, 5, and 6 GHz frequency bands.

Development of the 802.11be amendment is ongoing, with an initial draft in March 2021, and a final version expected by early 2024.

2.1 320 MHz Channels & 4K QAM

Wi-Fi 7 enables significantly faster speeds by packing more data into each transmission. 320 MHz channels are twice the size of previous Wi-Fi generations. 4K QAM (Quadrature Amplitude Modulation) enables each signal to more densely embed greater amounts of data compared to the 1K QAM with Wi-Fi 6/6E.

The benefit for a typical Wi-Fi 7 laptop is a potential maximum data rate of almost 5.8 Gbps. This is 2.4X faster than the 2.4 Gbps possible with Wi-Fi 6/6E and could easily enable high quality 8K video streaming or reduce a massive 15 GB file download to roughly 25 seconds vs. the one minute it would take with the best legacy Wi-Fi technology.

2.2 Multi-Link Operation & Deterministic Latency

While legacy Wi-Fi provides access to multiple wireless bands, devices typically choose only one band to make transmissions—switching to another if conditions change. With MLO (Multi-Link Operation), Wi-Fi 7 devices can simultaneously connect on multiple bands. This

enables faster speeds through aggregation. Or multiple bands can be used concurrently to share redundant/unique data for improved reliability with ultra-low and precise latencies.

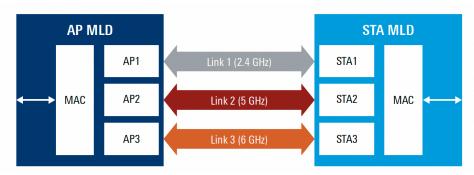


Figure 14 Restricted target wake time principle

2.3 Multi Resource Units (RU) and Puncturing

Multi-RU Puncturing improves the usage of transmission channels by increasing throughput and reducing latency when multiple users are present. It enables the use of multiple resource units, while puncturing is available to avoid interference with incumbent services, the congestion caused by interference and to maintain high transmission speeds.

Puncturing can take 80 MHz and 160 MHZ Wi-Fi channels and slice or bond them in increments of 20 MHz. To help avoid the congestion caused by interference, and it can maintain transmission speeds in multi-user scenarios without dropping the signal.

Figure 15 Puncturing improves spectrum efficiency

2.4 Multi-AP Operation

Wi-Fi 7 will have a coordinated transmission between multiple APs. It might also be worthwhile to coordinate beamforming between adjacent APs by forming spatial radiation nulls (null beams) to non-associated STAs in the neighborhood, which allows simultaneous transmission at the same frequency resource. The probably most complex feature under discussion is the joined

transmission (c) where multiple APs transmit/receive to/from one or multiple stations using the same frequency in a distributed MIMO scheme.

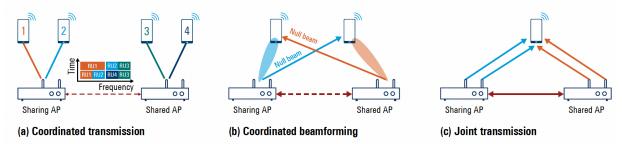


Figure 16 Multi-AP coordination feature principles

Other features

Annex 2

5GHz (802.11a/h/j/n/ac/ax)

			_				<u>5 GH</u>	z (802.1	<u>l a/h/j/r</u>	<u>1/ac/a</u>	IX					
Cha nnel	Cente r Freq	Frequenc y Range	1	2	4	8	160 MH z	Australia	Japa n	In di a	Sing apor e	Chi na	Kor ea	New Zealan d	Viet nam	Indo nesia
						, v										
	(MHz)	(MHz) 5030–5	MI 1							N						
7	5035	3030–3 040	1 0					No	No		No	No	No	No	No	No
/	5055	5030-5	0	2				INO	INO	0	INU	INO	INO	INO	INO	INO
8	5040	050 050		$\begin{bmatrix} 2\\ 0 \end{bmatrix}$												
0	3040	5040-5	1													
9	5045	050	$ \begin{bmatrix} 1 \\ 0 \end{bmatrix} $													
,	5045	5050-5	1													+
11	5055	060	0													
11	5055	5050-5		2												
12	5060	070		$\begin{bmatrix} 2\\ 0 \end{bmatrix}$												
	0000	5070-5		2												
16	5080	090		$\begin{bmatrix} 2\\ 0 \end{bmatrix}$												
									Ind			Ind	Ind		Ind	
		5150-5		2				Indo	oor	Y		oor	oor	Indoo	oor	Ind
32	5160	170		0				ors	s	es	Yes	S	s	rs	s	oors
		5150-5			4											
34	5170	190			0											
		5170-5		2												
36	5180	190		0												
		5170-5			4											
38	5190	210			0											<u> </u>
10		5190-5		2												
40	5200	210		0		0										<u> </u>
40	5210	5170–5				8										
42	5210	250 5210–5		2		0										┼───
44	5220	230		$\begin{vmatrix} 2\\0 \end{vmatrix}$												
44	5220	5210-5			4											
46	5230	250			$\begin{bmatrix} -4 \\ 0 \end{bmatrix}$											
10	0200	5230-5		2	Ŭ											
48	5240	250		0												
		5170-5														
50	5250	330					160			Inde	oors/DF	S/TPC			No	
		5250-5		2				Indo								
52	5260	270		0				ors								
		5250-5			4											
54	5270	290	<u> </u>		0						ļ			ļ		──
		5270-5		2												
56	5280	290	<u> </u>	0												──
50	5000	5250-5				8										
58	5290	330	<u> </u>			0				<u> </u>						──
(0	5200	5290-5 210		2												
60	5300	310	<u> </u>	0												

5 GHz (802.11a/h/j/n/ac/ax

		5200 5	гт		4									
62	5310	5290–5 330			4 0									
02	3310	5310-5		2	0									
64	5320	3310–3 330												
04	5520	550		0				Unk						
		5330–5		2				now						
68	5340	350		$\frac{2}{0}$				n						
	0010	5470-5		2										
96	5480	490		$\bar{0}$				DFS/	TPC		No	DFS/TPC		No
		5490-5		2										
100	5500	510		0				Yes						
		5490-5			4									
102	5510	530			0									
		5510-5		2										
104	5520	530		0										
		5490-5				8								
106	5530	570				0								
		5530-5		2										
108	5540	550	\vdash	0										
		5530-5			4									
110	5550	570		-	0									
110	5560	5550-5		2										
112	5560	570		0										
114	5570	5490-5					160	Na						
114	5570	650 5570–5		2			160	No						
116	5580	5570-5 590		2 0										
110	5580	5570-5		0	4									
118	5590	610			$\frac{1}{0}$			No						
110	5570	5590-5		2	0			110						
120	5600	610		$\frac{2}{0}$										
		5570-5				8								
122	5610	650				0								
		5610-5		2										
124	5620	630		0										
		5610-5	ΙT		4									
126	5630	650	$ \square$		0									
		5630–5		2										
128	5640	650	\vdash	0				D =						
100	5660	5650-5		2				DFC						
132	5660	670	$\left \right $	0	Α			/TPC						
124	5(70	5650-5			4									
134	5670	690 5670–5	\vdash	2	0					 		 		
136	5680	5670-5 690		$\frac{2}{0}$										
130	5000	5650-5	┝─┼	U		8								
138	5690	5650–5 730				8 0		No						
150	5070	5690-5	\vdash	2		0		Indo						
140	5700	710		$\frac{2}{0}$				ors						
110	2700	5690-5		5	4			010						
142	5710	730			0			No						
	-	5710-5		2										
144	5720	730		0								 		
		-											-	·

		5735–5		2					Ind oor	Y	Indo					
149	5745	755		$\begin{bmatrix} 2\\ 0 \end{bmatrix}$				Yes	s	es	ors	Yes	Yes			
		5735–5			4											
151	5755	775			0											
1.50		5755-5		2												
153	5765	775		0		0										
155	5775	5735–5 815				8 0										
100	5115	5775-5		2		0										
157	5785	795		0												
		5775–5			4											
159	5795	815			0											
161	5805	5795–5 815		20												
101	3803	5735-5		0						N						
163	5815	895					160	No	No	0	No	No	No			
									Ind							
		5815-5		2					oor	Y	Indo					
165	5825	835		0				Yes	S	es	ors	Yes	Yes			
1.67	5025	5815-5			4			ЪT	N T	Ν	3.7					
167	5835	855 5835–5			0			No	No	0	No	No	No			
169	5845	3833-3 855		$\begin{vmatrix} 2\\ 0 \end{vmatrix}$												
10)	0010	5815-5		Ŭ		8										
171	5855	895				0										
		5855-5		2												
173	5865	875		0												
175	5875	5855–5 895			4 0			No								
175	38/3	893 5875–5		2	0			No								
177	5885	895		$\begin{bmatrix} 2\\ 0 \end{bmatrix}$												
		5895-5	1													
180	5900	905	0													
									Reg							
102	5010	5905-5 015	1					No	d		No	No	No	No	No	No
182	5910	915 5905–5	0	2				No	req		No	No	No	No	No	No
183	5915	925		$\begin{bmatrix} 2\\ 0 \end{bmatrix}$												
										In	Sing			New		
Cha nnel	Cente r Freq	Frequenc y Range	1 0	2 0	4 0	8 0	160	Austr alia	Japa n	di a	apor e	Chi na	Kor ea	Zealan d	Viet nam	Indo nesia
			-	-												
	(MHz)	(MHz)		L	L					I	L			_		

Annex 3

Questionnaire Responses [Editor's note: consider parts of the Questionnaire compilation to be included in an Annex]

<u>Questionnaire</u>

Question 1: What is/are current frequency ranges for license-exempt (in some countries also known as general use license, class license) WAS/RLAN technology to use in your country?

	Frequency range	Maximum EIRP	Maximum PSD	Use condition (s)	Applicable Technical Standard (s)
Bhutan					
Nepal	2.4 – 2.4835 GHz	36 dBm		No exclusive right, shall be used in non-protection and shared basis.	
	5.725 – 5.825 GHz	36 dBm		No exclusive right, shall be used in non-protection and shared basis.	
Thailand	2400-2500 MHz	100 mW		Indoor/outdoor	EN 300 328 FCC Part 15.247
	5150-5350 MHz	200 mW		Indoor DFS and TPC are required in 5250-5350 MHz	EN 301 893 FCC Part 15.407
	5470-5725 MHz	1W		Indoor/outdoor DFS and TPC are required in 5470-5725 MHz	EN 301 893 FCC Part 15.407
	5725-5850 MHz	1W		Indoor/outdoor	EN 302 502 FCC Part 15.247 FCC Part 15.407
	5925-6425	25 mW	1.25 mW/MHz	Indoor/outdoor	FCC Part 15.407
	MHz	250 mW	12.5 mW/MHz	Indoor	
Japan	5 150-5 250 MHz	-	Indoor: 20 MHz: 10 mW/MHz 40 MHz: 5 mW/MHz 80 MHz: 2.5 mW/MHz 160 MHz: 1.25 mW/MHz Inside automobiles: 20MHz: 2 mW/MHz	Indoor or inside automobiles	Article 49-20, Paragraph 3 of the Radio Equipment Regulations
	5 250-5 350 MHz	-	40MHz: 1 mW/MHz 80MHz: 0.5 mW/MHz 20 MHz: 10 mW/MHz 40 MHz: 5 mW/MHz	DFS required, indoor only,	Article 49-20, Paragraph 3 of the Radio
			80 MHz: 2.5 mW/MHz		Equipment Regulations

			160 MHz: 1.25 mW/MHz	TPC or reduced		
			100 10112. 1.25 1100/10112	transmission power by 3		
				dB		
	5 470-5	-	20 MHz: 50 mW/MHz	DFS required,	Article 49-20, Paragraph	
	730 MHz		40 MHz: 25 mW/MHz	not allowed in the sky,	3 of the Radio	
			80 MHz: 12.5 mW/MHz	TPC or reduced	Equipment Regulations	
			160 MHz: 6.25 mW/MHz	transmission power by 3 dB		
	5 925-6 425 MHz	25 mW (VLP), 200 mW (LPI)	VLP: 20 MHz: 1.25 mW/MHz 40 MHz: 0.625 mW/MHz 80 MHz: 0.3125 mW/MHz 160 MHz: 0.15625 mW/MHz	Indoor only for LPI	Article 49-20, Paragraph 4 of the Radio Equipment Regulations	
			LPI: 20 MHz: 10 mW/MHz 40 MHz: 5 mW/MHz 80 MHz: 2.5 mW/MHz 160 MHz: 1.25 mW/MHz			
Malaysia	2400 MHz to 2500	500 mW	-	-	i. Class Assignment for	
	MHz 5150 MHz	200 mW	-	Outdooruse only	Short-range Radiocommunication	
	to 5250	1 W	-	Outdoor use only Indoor use only	Device	
	MHz	1 10			Device	
	5250 MHz	1 W	10 mW/MHz	 Indoor use only 	ii. Technical	
	to 5350			 The devices shall use 	Code for the	
	MHz			Dynamic Frequency	Specification for Short	
				Selection (DFS) and	Range Devices – Specifications	
				Transmitter Power Control (TPC)	specifications	
				The devices shall use		
	5470 MHz			Dynamic Frequency	Note: The use of	
	to 5650	1 W	10 mW/MHz	Selection (DFS) and	frequency band(s) for	
	MHz			Transmitter Power Control	devices that have been listed in the Class	
	5725 MHz			(ТРС)	Assignment are subject	
	to 5875 MHz	1 W	-	-	to the requirements and conditions as	
, I	5925 MHz		1.25 mW/MHz		specified in the Class	
	to 6425	25 mW	(10 mW/MHz for	Indoor and outdoor use	Assignment. The latest	
	MHz		narrowband usages)		Class Assignment document can be found	
		200 mW	10 mW/MHz	Indoor use only	in this URL: http://www.mcmc.gov. my/en/spectrum/assign ment-of-spectrum/class -assignment.	
Australia	2400–2483	500 mW		Either:		
	.5 MHz					
			1	(a) the transmitter must	1	
				meet the requirements of ETSI		

			(b) a minimum of 15 hopping frequencies must be used.
2400–2483 .5 MHz	4 W		A minimum of 75 hopping frequencies must be used.
5150–5250 MHz	200 mW (averaged over the entire transmissio n burst)	10mW/MHz or 40μW/4kHz for narrowband use	 (a) The transmitter must only be used indoors. (b) The power spectral density of a transmitter with a bandwidth greater than or equal to 1 MHz must not exceed 10 mW EIRP per MHz. (c) The power spectral density of a transmitter with a bandwidth less than 1 MHz must not exceed 40 µW EIRP per 4 kHz.
5250–5350 MHz	200 mW (averaged over the entire transmissio n burst)	10mW/MHz or 40μW/4kHz for narrowband use	 (a) The transmitter must only be used indoors. (b) The power spectral density of a transmitter with a bandwidth greater than or equal to 1 MHz must not exceed 10 mW EIRP per MHz. (c) The power spectral density of a transmitter with a bandwidth less than 1 MHz must not exceed 40 μW EIRP per 4 kHz. (d) The transmitter must use Dynamic Frequency Selection (DFS). (e) If the maximum EIRP is greater than 100 mW, the transmitter must use Transmit Power Control (TPC).

	1 W	50mW/MHz		
 (a) 5470– 5600 (b) 5650– 5725 	(averaged over the entire transmissio n burst)	SUTTW/IMEZ	 (a) The maximum radiated mean power density must not exceed 50 mW/MHz EIRP in any 1 MHz band. (b) The transmitter must use Dynamic Frequency Selection (DFS). 	
			(c) If the maximum EIRP is greater than 500 mW, the transmitter must use Transmit Power Control (TPC).	
5925-6425 MHz	250 mW	12.5mW/MHz	 (a) The transmitter must only be used indoors. (b) The power spectral density of the transmitter must not exceed 12.5 mW EIRP per MHz. (c) Contention-based protocols for multiple access, such as Carrier Sense Multiple Access (CSMA) or Multiple Access Collision Avoidance (MACA), must be implemented. 	
5925-6425 MHz	25 mW	1.25mW/MHz	 (a) The power spectral density of the transmitter must not exceed 1.25 mW EIRP per MHz. (b) Contention-based protocols for multiple access, such as Carrier Sense Multiple Access (CSMA) or Multiple Access Collision Avoidance (MACA), must be implemented. 	

Indeped		Indeen 27		ladeen	Director Conorol CDDDI
Indonedi	2400 -	Indoor: 27 dBm	-	Indoor (maximum bandwidth	Director General SDPPI Regulation No.2 of 2019
а	2483.	Outdoor: 36		40 MHz)	Regulation No.2 of 2019
	5 MHz	dBm		40 10112)	
		dbiii		Outdoor (maximum	
				bandwidth	
				20 MHz)	
				,	
		23 dBm		(access/backhaul) Indoor	Director General SDPPI
	5150 -	25 UDIII	-	(maximum bandwidth	Regulation No.2 of 2019
	5250			80 MHz)	Regulation No.2 of 2019
	MHz			80 10112)	
				(access)	
	5350	23 dBm	-	Indoor	Director General SDPPI
	5250 -			(maximum bandwidth	Regulation No.2 of 2019
	5350			80 MHz)	
	MHz				
				(access)	
		23 dBm	-	Indoor	The technical standard
	5150 -			(maximum bandwidth	is still being developed
	5350			160 MHz)	
	MHz				
				(access)	
	5725 -	Indoor: 23	-	Indoor (maximum	Director General SDPPI
	5825	dBm		bandwidth	Regulation No.2 of 2019
	MHz	Outdoor: 36		80 MHz)	
		dBm		Quatria an	
				Outdoor	
				(maximum bandwidth	
				20 MHz)	
				(access/backhaul)	
		40 dBm	-	Indoor	The technical standard
	57 - 64 GHz			(maximum bandwidth	for RLAN 60 GHz is still
				2.16 GHz)	being developed
				(access)	
India	2400-2483.	36 dBm		Non-interference,	
	2400-2483. 5			non-protection and shared	
	MHz ²³			(non-exclusive) basis.	
	5.150-5.25	36 dBm	17 dBm/MHz	Access point:	
	0 GHz ²⁴		· , ···-	≤ 6 dBi antenna gain & 30	
				dBm conducted power.	
		21 dBm		Above 30°elevation	
				(outdoor)	
		53 dBm		Fixed point to point access	
				point:	
				≤ 23 dBi antenna gain &	
		20 40~	11 dpm /MU-	30 dBm conducted power.	
		30 dBm	11 dBm/MHz		

²³https://dot.gov.in/spectrummanagement/delicensing-24-24835-ghz-band-gsr-45-e-5150-5350-ghz-gsr-4
 <u>6-e-and-5725-5875-ghz</u>
 ²⁴ https://dot.gov.in/spectrummanagement/license-exemption-5-ghz-gsr-1048e-dated-22102018

				Client/portable mobile]
				device:	
				≤ 6 dBi antenna gain &	
				250 mW conducted power	
	5.250-5.35	30 dBm	11 dBm/MHz	Access point:	
	0 GHz			≤6 dBi antenna gain &	
	5.470-5.72			250 mW conducted power	
	5 GHz			or 11dBm + 10 log B,	
				whichever is less, where	
				'B' is the emission bandwidth in MHz.	
				Access point:	
	5.725-5.87	36 dBm	30 dBm/500 kHz	$\leq 6 dBi antenna gain \& 30$	
	5 GHz	50 0.511	50 abili 500 kil2	dBm conducted power.	
		53 dBm		Fixed point to point access	
				point:	
				≤ 23 dBi antenna gain &	
				30 dBm conducted power.	
Vietnam		≤ 200 mW		Common use condition	
		EIRP (for		(for all RLAN bands):	
		equipment		Organizations and	
	2400 ÷	using FHSS modulation)		individuals deploy and use WLAN/RLAN equipment	
	2483,5	modulation		that need to comply with	QCVN 54:2020/BTTTT
	MHz			laws and regulations on	
				telecommunications,	
				information security and	
				data protection.	
		≤ 10 mW/1			
		MHz EIRP			
		(for			
		equipment using			
		non-FHSS			
		modulation)			
	5150 ÷	≤ 200 mW		Using in an indoor	QCVN 65:2013/BTTTT
	5250 MHz	EIRP		environment (Indoor use)	
				or an environment with	
				electromagnetic wave	
				shielding (ie: in car)	
		≤ 200 mW		The device must be	
	5350 ·	EIRP (for		capable of dynamic	
	5250÷	equipment		frequency selection (DFS)	QCVN 65:2013/BTTTT
	5350 MHz	being adjustable			
		power)			
		≤ 100 mW		The device must be	
		EIRP (for		capable of dynamic	
		equipment		frequency selection (DFS)	
		being			
		non-adjusta			
		ble power)			
	5470 ÷	≤ 1 W EIRP		The device must be	
	5725 MHz	(for		capable of dynamic	QCVN 65:2013/BTTTT
		equipment		frequency selection (DFS)	

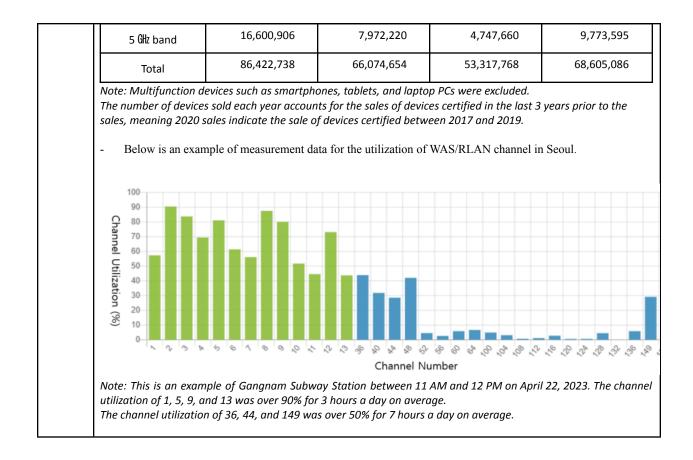
				I	1
		being			
		adjustable			
		power)			
		≤ 500 mW		The device must be	
		EIRP (for		capable of dynamic	
		equipment		frequency selection (DFS)	
		being			
		non-adjusta			
		ble power)			
	5725 ÷ 5850 MHz	≤1 W EIRP			QCVN 65:2013/BTTTT
	5850 WITZ			Deguize to use the	
	GHz	≤ 10 W EIRP		- Require to use the	QCVN 88:2015/BTTTT
	GHZ			integrated antenna - Do not install in a fixed	
				outdoor location	
China	2 400 2	2 0.1D			National regulation
China	2 400-2 483.5	20 dBm	10 dBm/MHz (e.i.r.p. for	Interference Avoidance	National regulation
	465.5	(e.i.r.p. for	Integrated antenna gain <	mechanism is mandatory	rules applied
		integrated	10 dBi)	Additional out of band	
		antenna		emission limit applies in	
		gain < 10	17 dBm/MHz (e.i.r.p. for	order to protect the	
		dBi)	Integrated antenna gain	service in the adjacent	
			>= 10 dBi)	band and in specific	
		27 dBm		bands. *	
		(e.i.r.p. for	Frequency hopping <=		
		antenna	20dBm/100kHz		
		gain >= 10			
		dBi)			
	5 150-5	23 dBm	10 dBm/MHz (e.i.r.p.)	Indoor use only (use	National regulation
	350	(e.i.r.p.)		within vehicle is	rules applied
		(•		prohibited).	
				5 250-5 350 MHz, TPC	
				and DFS are mandatory.	
				-	
				Interference Avoidance	
				mechanism is mandatory	
				Additional out of band	
				emission limit applies in	
				order to protect the	
				service in the adjacent	
				band and in specific	
				bands*	
	5 725-5	33 dBm	19 dBm/MHz (e.i.r.p)	Interference Avoidance	National regulation
	850	(e.i.r.p.)		mechanism is mandatory	rules applied
	1			Additional out of band	
				emission limit applies in	
	1			order to protect the	
	1			service in the adjacent	
	1			band and in specific	
				bands*	
Korea				LPI ¹⁾	Unlicensed Wireless
				(Indoor only)	Equipment Regulation
				(LBT is required)	Article No.7
	5 925 ~ 7			1) - allowed only the	
	125 MHz	24 dBm	2 dBm/MHz	devices installed	
				and operated by	
	1			being connected to	
	1			the power supply	
	1	1	1	the power suppry	1

			within a building or the devices that communicate with these devices - not allowed in moving objects, such as vehicles, aircraft, railways,	
			ship, drones, etc. - applicable for only indoor usage.	
5 925 ~ 6 425 MHz	14 dBm	1 dBm/MHz	 VLP²⁾ (Indoor/Outdoor) (LBT is required) 2) - not allowed in a drone devices built in vehicle are allowed in 6 085-6 425 MHz band only applicable for both indoor and outdoor usage 	
	24 dBm	2 dBm/MHz	Subway ³⁾ (Inside subway train only) (LBT is required) 3) - allowed only the devices installed and operated by being connected to the power supply within a subway train or the devices that communicate with these devices	

Please provide detailed information such as indoor/outdoor, DFS requirement in the "use condition" field.

Question 2: Is there any WAS/RLAN devices certification and labelling rules in your country and if so, what are these rules?

Answer:


Bhutan Type

Type Approval Rules and Regulations.

	However, we do not require WLAN with low power devices to be Type Approved.
Nepal	Yes. WAS/RLAN devices shall be type approved by Nepal Telecommunications Authority. Only type approved equipment are allowed to be imported in Nepal. However, Type Approval Certificate is not an import license.
Thailand	A Supplier's Declaration of Conformity (SDoC) rule applies.
Japan	 Yes, there are technical standards certification and labelling rules for WAS/RLAN equipment as follows: Ordinance on Technical Standards Conformity Certification of Specified Radio Equipment (Ordinance of the Ministry of Posts and Telecommunications No. 37 of 1981); Notice to define technical requirements for radio equipment of radio stations for low-power data communication systems (MIC Notice No. 48 of 2007, No.291 of 2022).
Malaysia	All communication devices (including WAS/RLAN devices) which are required to be certified shall be certified pursuant to Regulation 14 of the Communications and Multimedia (Technical Standards) Regulations 2000. Certified communication devices shall bear MCMC label to indicate that they comply with the standards and legal requirements enforced by MCMC. For details, please refer to: http://www.mcmc.gov.my/en/communications-equipment/certification-of-communications-equipm ent.
Australia	Yes, Australian labeling rules apply to most radiocommunications transmitters. All short range devices in Australia must be labelled to certify that they conform to applicable standard – the Radiocommunications (Short Range Devices) Standard 2014, which references AS/NZS 4268 (which, in turn, makes reference to other international standard for various device types).
Indonesia	All WAS/RLAN devices must be certified and labeled in accordance with the Regulation of the Minister of Communications and Informatics No. 16 of 2018. The testing parameters for certification shall refer to Director General of Resources Management and Equipment of Posts and Informatics (DG SDPPI) Regulation No.2 of 2019.
India	Yes, Equipment Type Approval. The procedure along with application for obtaining Equipment Type Approval is included in the relevant notification. https://dot.gov.in/spectrummanagement/license-exemption-5-ghz-gsr-1048e-dated-22102018
Vietnam	There are some rules to certificate and label for WAS/RLAN device: -Firstly, EMC measurement is performed in a shielded room. Measurement results will be issused. -Secondly, If the measurement results meet the technical standards the device will get a declaration of conformity, a certification and a label (being specified in the circular No. 02/2022/TT-BTTTT).
China	Devices certification is required. See details at: <u>https://ythzxfw.miit.gov.cn/lawGuide?data=e108714ad0804b5d8e9f2c8c09049875</u>
Korea	Public Notice on Conformity Assessment of Broadcasting and Communication Equipment, etc. Please see the relevant website https://www.rra.go.kr/en/cas/intro.do
	 In the Public Notice, Chapter 2 (Certification) includes Application for conformity certification (Article 5), Examination of conformity certification (Article 6), and Issuance of certificate of conformity (Article 7). In the Public Notice above, Article 23 stipulates labelling rules. Most RF (radio frequency) devices must be approved through the certification of conformity. For devices that may affect the radio environment, broadcast communications network, or the like, as well as devices whose normal operation is subject to possible interference from radio waves, the certificate of conformity can be applied for from the National Radio Research Agency (RRA) with the appropriate documentation.

Question 3: What's the current utilization of existing WAS/RLAN spectrum bands by the WAS/RLAN in your country? Do you have any measures of the utilization of existing WAS/RLAN spectrum bands

Bhutan	ISM Band							
Nepal								
Thailand	WAS/RLAN equipment	is license exempted ar	nd can be used freely n	ationwide				
Japan	N/A.		· · ·					
	We are considering upo	lating the information	in AWG-32 or later.					
Malaysi a	Such information is not	available.						
Australi	Australia does not keer	records of utilization	of spectrum hands aut	horized for use by class	licences but			
a			-	rectly measure utilizatio				
Indonesi				backhauling as transport				
a	,	•		LAN that used for outdo				
	will be developed.		0		- (,,			
India	The utilization is for ind	loor and outdoor.						
Vietnam	The designed bands for	· WAS/RLAN are widel	y utilized, with various	type of application such	as public/private			
	Wi-Fi access, wifi direct		•					
	In case of licence-exem	pted band, so far ther	e is no report on the ut	tilization of existing WAS	S/RLAN spectrum			
	bands.							
China								
Korea	The annual data for cor	nformity assessment n	umber of 2.4/5/6 GHz	WAS/RLAN				
			l over 68 M devices we	WAS/RLAN in 2.4 GHz, : ere sold.	o miland out band, are			
	Frequency	The number of certified devices						
	Band	2020	2021	2022	Average			
	2.4 GHz band	10,800	11,411	11,733	11,314			
	5 GHz band	1,371	1,351	1,487	1,403			
	6 GHz band	1	99	396	165			
	Total	12,172	12,861	13,616	12,882			
	Note : Multifunction de	vices such as smart ph	nones, tablets, and lap	-top PCs were excluded.				
	Frequency		The number of WA	AS/RLAN devices sold				
	Band	2020	2021	2022	Average			
	2.4 GHz band 69,821,832 58,102,434 48,570,108 58,831,491							

Question 4: What are the current fixed broadband technologies used in your country (e.g., Cable, Fiber, unlicensed or cellular based FWA, etc.), and what is the adoption rates for fixed broadband services (e.g., xDSL/ FTTx/FWA/satellite) in your country?

Bhutan	Fixed Broadband Internet, Fixed Wireless Internet	
Nepal	The current fixed broadband technologies used in Nepal are Cellular based FWA, Wi-Fi, FTTH, ADSL	
	and Coaxial Cables.	
	Current adoption rates:	
	Cellular based FWA: NA	
	Wireless: 0.23 % of total population	
	FTTH/ Coaxial Cables: 36.13 % of total population	
	ADSL: 1.09 % of total population	
Thailand	xDSL, Cable Modem and FTTx are available	
Japan	The adoption rate for fixed broadband technologies (as of March 31, 2021):	
	- Fiber: 99.3%	
	The number of subscribers (as of September 30, 2022):	
	<fixed broadband=""> total 44.3 million</fixed>	

	FTTH: 37.33 million				
	CATV: 6.42 million				
Malaysia	DSL: 0.54 million The current fixed broadband technologies used in Malaysia includes fibre, copper and o				
	technologies such as satellite, FWA and Gigawire. As of Q4 2022, the fixed broadband subscriptions in Malaysia stands at 4.22 million, with 47.6% penetration rate per 100 premises. The penetration rates of the fixed broadband services by technology are as follows:				
	Technology	Penetration Rate per 100 premises (%)			
	FTTx	46.5			
	xDSL	0.8			
	FWA	0.2			
	Satellite	0.1			
	Others*	0.1			
	* Includes Ethernet and Gigawire	* Includes Ethernet and Gigawire			
Australia	alia In Australia, 95% of broadband connections are delivered by the government-owned Natio Broadband Network (NBN Co.) Statistics collected by the competition regulator (ACCC) sho current fixed technologies include Fibre optic cable (Fibre optic includes fibre-to-the-curb fibre-to-the-basement (FTTB), fibre-to-the-node (FTTN) and fibre-to-the-premises (FTTP)), hybrid-fibre coaxial cable (HFC) and Fixed Wireless.				
Adoption rates of nbn services in June 2022 were: > FTTN: 35.5% > HFC: 23.3% > FTTP: 20.4% > FTTC: 12.8% > FTTB: 3.2% > FWA: 4.6%. Fixed wireless is also offered by commercial mobile network operators. Nbn has 400 customers, TPG and Optus reported a further 377,000 fixed wireless customers at D					
Indonesia	2022 (source: December quarter 2022 report ACCC). Fixed broadband technologies used in Indonesia mostly based on fiber optic and satellite. Adoption rate for fixed broadband services (FTTx): Year 2021 : 17.23 % households Year 2022 : 22.91 % households Total household : 68,700,700 (data 2019)				
India					
Vietnam	technologies. - By the end of 2022, FTTx connection	 - CaTV (Internet over cable TV), xDSL, FTTH and cellular based FWA are the current fixed broadband technologies. - By the end of 2022, FTTx connection has been deployed to 100% of communes/wards/ townships, 91% of villages, 100% of schools, 72.4% of household (20 million houses). 			
China	Fixed networks(fiber) have gradually upgrade from 100 Mbit/s to 1000 Mbit/s. By the end of 2022,15.23 million 10G PON ports with gigabit service capabilities have been built, nearly double the levelof 2021. 110 cities across China have reached the gigabit city standard.By the end of 2022, China had 590 million fixed broadband access users, with a populationpenetration rate of 41.8 units per 100 people.https://www.miit.gov.cn/igsi/vxi/xxfb/art/2023/art69798e71872c407ab677fd1c73885337.html				
Korea	Fiber and FTTx are used as one of major technologies for fixed broadband.				

Question 5: What is the average fixed broadband connection speed per connection (both residential premises and business/ enterprise premises) (e.g., xDSL/ FTTx /FWA/satellite) in your country?

Bhutan	The normal average leased line internet connections leased by general households is 2 to 4Mbps				
Nepal					
Thailand	The average fixed broadband connection speed is approximately 100 Mbps.				
Japan	N/A. We are considering updating the information in AWG-32 or later.				
Malaysia	Indicator	Download Speed (As of January 2023)	Source		
	Mean fixed-broadband speed	138.84 Mbps	Ookla speedtest		
	Median fixed-broadband speed	92.69 Mbps	global index		
Australia	In Australia, 95% of broadband connections are delivered by the government-owned National Broadband Network (NBN Co.). There is also a significant enterprise market, but data on enterprise speeds and performance are not collected. Data is also not separately available for business premises. The following applies only to residential customers. nbn products are sold by speed, so consumers get whatever speed they select ranging from 12Mbps to 1Gbps. The following shows the average available speed and then the most popular product (ie: what speed plan the majority of customers are paying for). Statistics collected by the competition regulator show: > The average speeds available for FTTP are 276 Mbps. > 46% of FTTP connections are on 50 Mbps > Average speed available for FTTC, FTTB, FTTN and HFC is 46.75 Mbps > 62% of these connections are on 50 Mbps > Average speed available on fixed wireless is 37.3 Mbps > 60% of connections are on 60 Mbps.				

	Source: December quarter 2022 report ACCC	
Indonesia	The average fixed broadband connection (FTTx) for downlink is 25.45 Mbps and the average uplink speed is 12.95 Mbps (Ookla, December 2022).	
India		
Vietnam	In recent survey, it showed that average fixed broadband connection speed per connection in Viet Nam, depending on operators, are in the range from 50 Mbps to 100 Mbps.	
China	554 million fixed broadband users reached the access rate of 100 Mbit/s, accounting for 93.9% of broadband users. 91.75 million fixed broadband users reached the access rate of 1000 Mbit/s, accounting for 15.6%. The total bandwidth of fixed broadband users reaches 1993.3 million Gbit/s. The average subscribed bandwidth per household has reached 367.6 Mbit/s. https://www.miit.gov.cn/jgsj/yxj/xxfb/art/2023/art_69798e71872c407ab677fd1c73885337.html	
Korea	10 Gbps is the average speed for fixed broadband connection using FTTx.	

Question 6: Which WAS/RLAN technologies are used in your country, for example Wi-Fi, LTE-U, NR-U? And what are the use cases for these technologies?

Bhutan	Wi-Fi	
Nepal	Wi-Fi is the only WAS/RLAN technology currently in use in Nepal.	
Thailand	WiFi technology is used in 2.4 GHz and 5 GHz frequency bands.	
	LTE-U technology is used in 5 GHz frequency band.	
Japan	The technical standards have been established for WAS/RLAN technologies, and the use of any technology and its utilization for any use case are permitted as long as the above standards are followed.	
Malaysia	As to date, Wi-Fi is the widely used technology for WAS/RLAN. Some of the use cases of WAS/RLAN include Internet Access, Mobile Device, Home Networking, Smart Home Device, Business Networking, Internet of Things (IOT) and Education.	
Australia	As the vast majority of WAS/RLAN use in Australia is authorised under class licensing, and Australian regulations are also generally technology-neutral, so users are free to deploy any technology that meets applicable technical conditions. We therefore have no specific record of which technologies are deployed, or their use cases.	
Indonesia	WAS/RLAN a. WiFi/RLAN : used for access and backhaul.	

	b. 5 GHz band (5150 – 5350 MHz and 5725 – 5825 MHz) opened for class-licensed IMT-based technology such as LAA
India	License exemption is technologies neutral. WAS/RLAN technologies use cases in India are predominantly for Home Broadband, Enterprise Broadband and Public Wifi hotspots
Vietnam	Up to now, WAS/RLAN technologies are used in Vietnam that has been just Wi-Fi. The use cases for this technology are public/private Wi-Fi access, wifi direct, bluetooth, Ip camera, remote control.
Korea	WiFi 6E is used for WAS/RLAN technologies and use cases are attached as Annex 1.

Question 7: What is your country's spectrum plan on the 6 GHz band for WAS/RLAN use?

Bhutan	We have not yet planned the 6GHz band for WAS/RLAN since it is explicitly used by the satellite		
	services at the moment. In future, with the coming of WiFi-6, we may look into refarming for		
	WAS/RLAN.		
Nepal	As the 6 GHz band is currently used for FS/FSS services, there is no immediate action plans related to		
	the use of 6 GHz band for WAS/RLAN. At the moment, Nepal is monitoring the international		
	developments in this topic.		
Thailand	The equipment using the band 5.925-6.425 GHz is license exempted and can be used freely		
	nationwide. (RLAN).		
	The use of the band 6.425-7.125 GHz is planned to be considered after WRC-23.		
Japan	The national regulation was revised to allow WLAN operations in the 5925-6425 MHz frequency band		
	in September 2022. The 6425-7125 MHz frequency band is under consideration for future		
	assignments.		
Malaysia	Malaysia has made available the 5925 MHz to 6425 MHz frequency band for WAS/RLAN under the		
	Class Assignment for Short-range Radiocommunication Device. Malaysia is currently monitoring the		
	international development and studies of the 6 GHz band in view of any future considerations of the		
	6425 MHz to 7125 MHz frequency band.		
Australia	The ACMA has authorised 2 classes of device in the 5925–6425 MHz ('lower 6 GHz') band. These two		
	classes of device are often referred to as low power indoor (LPI) and very low power (VLP). The		
	proposed power limits and restrictions specific to these classes are:		
	For LPI devices:		
	maximum power 24 dBm EIRP		
	maximum power density 11 dBm/MHz EIRP		
	must operate indoors.		
	For VLP devices:		
	maximum power 14 dBm EIRP		
	maximum power density 1 dBm/MHz EIRP		
	may operate in any location.		
Indonesia	No definitive plan.		
India	This is still under study and evaluation phase.		

Vietnam	Currently, there is no spectrum plan or regulation for the use of WAS/RLAN in the 6 GHz band. We			
	are considering to allocate spectrum for RLAN and/ors IMT in 6 GHz band, taking into account			
	international trend and country need for the development of nation broadband infrastructure.			
China	China will identify the band 6425-7125 MHz or portions thereof, for IMT in the new version of the			
	Regulations on the Radio Frequency Allocation of China. Currently there's no plan to use 6GHz band			
	for WAS/RLAN in China.			
Korea	Since 2022, the frequency band 5 925-7 125 MHz has been opened for WAS including WiFi 6E with			
	license-exempt usage, and WiFi 6E will be evolved to WiFi 7 after 2024.			

Question 8: What are the incumbent services and their frequency ranges in the 6 GHz band?

	Frequenc y Range	Incumbent services	Conditions
Bhutan	6GHz	Satellite Services (VSAT) and Television Satellite	
Nepal	5925 MHz - 6425 MHz	Fixed Point to Point Microwave Link	NA
	6425 MHz - 6700 MHz	Fixed Satellite Services	NA
	6425 MHz - 7125 MHz	Fixed Point to Point Microwave Link	subject to the co-ordination with FSS Allocation
Thailand	5.925-6.42 5 GHz	Fixed-satellite service (Uplink)	
	6.425-7.12 5 GHz	Fixed-satellite service (Uplink) and Fixed service	
Japan	5 925-6 425 MHz	FIXED FIXED SATELLITE (Earth-to-space)	

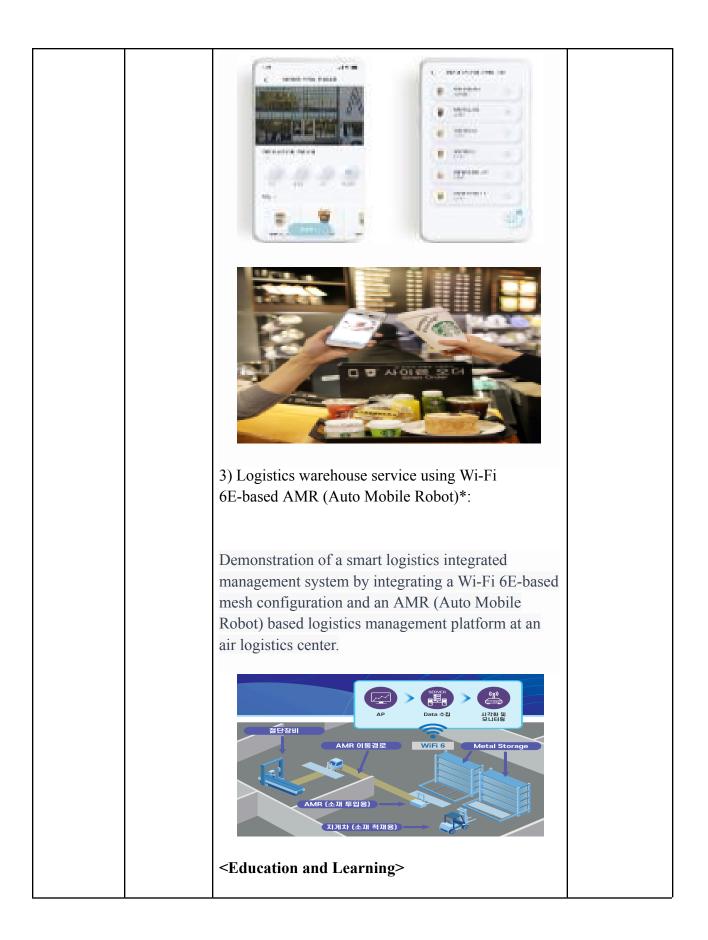
		MOBILE	Low-Power Data Transmission System shall be used
	6 425-6 570 MHz	FIXED FIXED SATELLITE (Earth-to-space) MOBILE	
	6 570-6 870 MHz	FIXED FIXED SATELLITE (Earth-to-space)	
	6 870-7 075 MHz	FIXED FIXED SATELLITE (Earth-to-space) MOBILE	
	7 075-7 125 MHz	FIXED MOBILE	
Malaysia	5925 MHz to 7075 MHz	Fixed Satellite Service Earth Station (VSAT/Hub station)	 Use by way of Apparatus Assignment (licensed apparatus) and Class Assignment* (Non-licensed apparatus). For FSS use under the Class Assignment, the requirements and conditions are specified in Class Assignment for Fixed-Satellite Service Earth Station.
	5925 MHz to 7125 MHz	 Fixed Service Microwave Link Outside Broadcast Microwave Link 	 Use by way of Apparatus Assignment (licensed apparatus). Fixed service operates on non-interference basis (NIB) to the earth stations of Fixed Satellite Service. Other requirements/conditions are specified in the relevant documents which can be found at this URL: https://www.mcmc.gov.my/en/spectrum/standard-r adio-system-plan-resources:
	5925 MHz to 6425 MHz	Short-range Radiocommunication Device (including WAS/RLAN)	 Use by way of Class Assignment (Non-licensed apparatus) The relevant requirements and conditions are specified in the Class Assignment for Short-range Radiocommunication Device (SRD) (please refer to the answers provided in Question 1 above).
Australia	5925 – 6425 MHz	Fixed Earth – 284 Point to Point links – 2179 Radiodetermination – 1	
	6425–7125 MHz	Fixed Earth – 23 Earth Receive – 9 Point to Point links – 2661 Radiodetermination – 7	
Indonesi a	6 425 – 7 110 MHz	Fixed Wireless Point to Point (Microwave Link)	utilized service

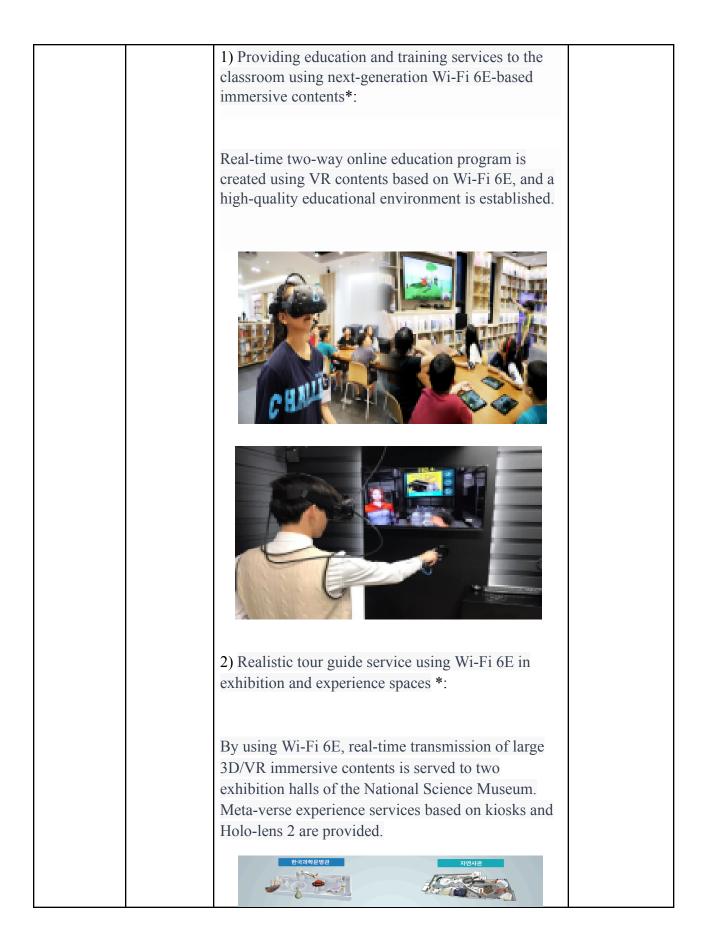
	5 925 - 6	Fixed Satellite Service	utilized service
	5 925 – 6 725 MHz	The Salenile Service	
	6 725 – 7 025 MHz	Fixed Satellite Service	planned band
India	5925-6425 MHz	Fixed Service (Point to Point links), FSS (E-to-s)	
	6 425-6725 MHz	FSS (E-to-s)	
	6725-7025 MHz	FSS (E-to-s), Fixed Service (Point to Point links)	
	7025-7 125 MHz	Fixed Service (Point to Point links)	
Vietnam	5925-6425 MHz	FIXED	
		FIXED-SATELLITE (Earth-to-space) MOBILE	RR. No. 5.457A 5.457B
			5.149 5.440 5.458
	6425-6700 MHz	FIXED FIXED-SATELLITE (Earth-to-space) MOBILE	RR. No. 5.457A 5.457B
			5.149 5.440 5.458
	6700-7075 MHz	FIXED FIXED-SATELLITE (Earth-to-space) (space-to-Earth) MOBILE	RR. No. 5.441
			5.458 5.458A 5.458B VTN16
			VTN16 The following frequency bands are preferred for the use of systems in the Fixed-satellite service:
			3400-3560 MHz (space-to-Earth direction)
			6425-6725 MHz (Earth to Space)
			10700-11700 MHz (space-to-Earth direction)
			12750-13250 MHz (Earth to Space)

			13750-14000 MHz (Earth to Space)
			14250-14500 MHz (Earth to Space)
			Earth stations operating in the bands 3400-3560 MHz and 10700-11700 MHz must employ the receiver filters to reject out-of-band signals in accordance with the regulations specified by the Ministry of Information and Communications.
			Systems in other services operating in this band shall not cause harmful interference to and shall not be protected from harmful interference cause by systems in the Fixed-satellite service.
	7075-7110	FIXED	
	MHz	MOBILE	
			RR. No. 5.458
China	5925-6700	FIXED	
	MHz	FIXED-SATELLITE (Earth-to-space) 5.457A	
		MOBILE CHN38	
		5.149 5.440 5.458 CHN12 CHN18 CHN23	
	6700-7075	FIXED	
	MHz	FIXED-SATELLITE (Earth-to-space) (space-to-earth) 5.441 MOBILE	
		5.458 5.458A 5.458B	
		CHN23	
	7075-7145	FIXED	
	MHz	MOBILE	
		5.458 CHN23	

Korea	6 425 ~ 6 605 MHz 6 765 ~ 6 945 MHz	Broadcasting (Fixed)	
	6 605 ~ 6 765 MHz 6 945 ~ 7 125 MHz	Broadcasting (Mobile)	
	5 925 ~ 6 425 MHz 6 430 ~ 7 110 MHz	M/W (Fixed)	
	6 876 ~ 7 051.86 MHz	Satellite (Feeder link)	

Question 9: Does your administration have a frequency assignment/license database system for the 6 GHz band? If there is such a database, is it open to public for 3^{rd} coordination system to interact with? Please provide some details


Bhutan	N/A		
Nepal	The assignment database is maintained for Fixed Satellite Service and Fixed Services (Microwave) separately. But such database is not publicly available.		
Thailand	There is a frequency assignment/license database system, but it is not open to public.		
Japan	Yes, we have a database system for all domestic radio stations, which is available on the MIC website.		
Malaysia	The frequency bands assigned under the Apparatus Assignment are registered in MCMC's Spectrum Management System. Some information of frequency assignments (such as transmit/receive frequencies, assignment holders, location, etc.) are available in MCMC's website, which can be found at https://www.mcmc.gov.my/en/legal/registers/cma-registers. There is no frequency database system for short-range radiocommunication devices (including WAS/RLAN) under the Class Assignment.		
Australia	Yes, publicly available and searchable database, the Register of Radiocommunications Licenses at https://web.acma.gov.au/rrl/register_search.main_page , however note that devices authorized by Class Licence do not appear on the register. The information on licensed services given in answer to question 8 is taken from this data.		
Indonesia	Yes, there is license database for 6 GHz band existing usage. It is not open to public for 3 rd coordination system to interact with.		


India	There is a robust licensing and frequency assignment system in place. Yes, India does have frequency assignment/license database system for the frequency bands including 6 GHz band. Wireless Planning and Coordination Wing (WPC) is nodal agency to do any coordination.
Vietnam	Yes, the administration has. However, in current regulations, it is not open to public for 3rd coordination system to interact with.
China	Yes, there's database system. However, there's no plan to public the database for any 3rd system as it might bring risk.
Korea	The Republic of Korea has a frequency assignment/license database system for all radio stations including 6 GHz band and a plan to develop for 6 GHz frequency coordination system in near future.

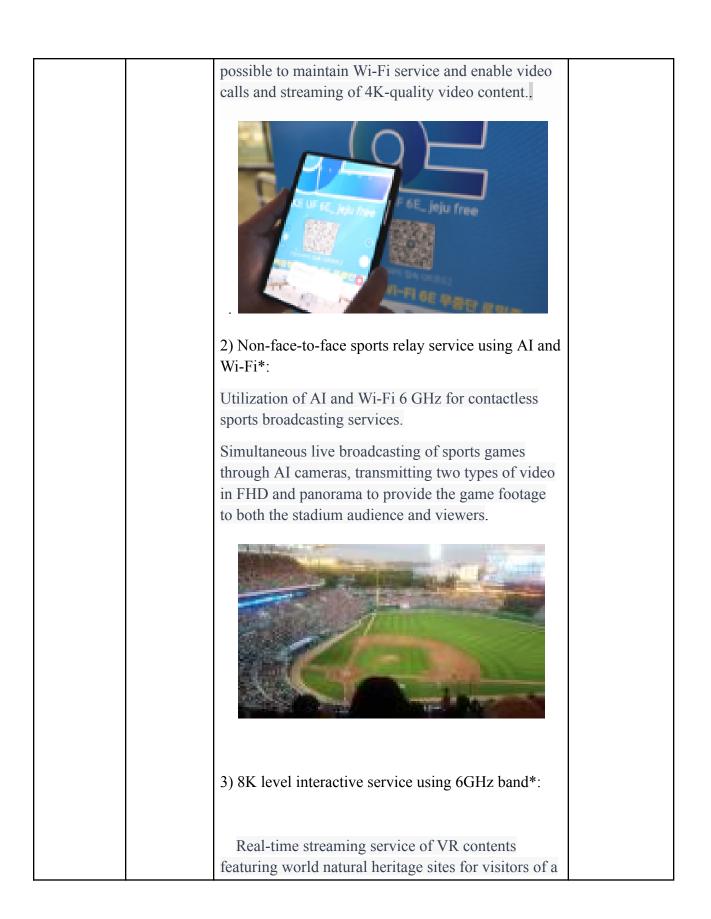
Annex 1 Korea's detailed response to Question 6

Question 6: Which WAS/RLAN technologies are used in your country, for example Wi-Fi, LTE-U, NR-U? And what are the use cases for these technologies?

Wi-Fi 6(E)5/6 GHzImage: State of the	Technology	Frequency	Use case	Remarks
Association Association Association Association Association business stores that provides contactless services such as displaying menus, ordering, and payment to users who connect through a QR code. A big data			Solution> 1) Wi-Fi 6E and AI robot-based smart solution for businesses*: Building a high-capacity, low-latency, and multi-connection environment with Wi-Fi 6E in small business, and executing automatic order taking, easy payment, serving, and checkout scenarios with AI serving robots. Understand Service Content of Service In State Servi	*The technology and service demonstratio n items are developed by small and medium-sized venture entrepreneurs with the support of the Korean government and the Korea Radio Promotion

<Navigation>

1) Wi-Fi 6E-based high-precision AR Navigation*:


Providing location-based AR navigation services to users who are connected to Wi-Fi 6E at a distance by combining visual positioning system (VPS) data with AR content.

<Streaming Service>

1) Seamless data roaming service with 6GHz Wi-Fi technologies*:

At the outdoor gates of Airport, it is possible to connect to a 6 GHz Wi-Fi network using a smartphone while moving around. By utilizing roaming and mesh networking capabilities, it is

		a Source of the second stable internet service by constructing a strength.	
LTE-U	5GHz	 Public Wi-Fi offloading for data traffic from public Wi-Fi networks to LTE-U networks Mobile video for providing high-quality mobile streaming video and live video Internet of Things (IoT) for providing wireless connectivity to IoT devices Emergency services for providing wireless connectivity to emergency services for police, fire, and medical services 	
NR-U	5/6GHz	Not yet	